A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket
Programming

Author:

Version: 1.2

Document Number: GG24-2561-00

Build Date: 06/22/95 20:29:51

Copyright Date: ? Copyright IBM Corp. 199

Processed by boo2pdf (http://www.kev009.com/wp/boo2pdf)

TITLE Title Page
A Beginner's Guide to MVS TCP/IP Socket Programming
Document Number GG24-2561-00
June 1995
International Technical Support Organization
Raleigh Center
NOTICES Notices
___ Take Note!

|
Before using this information and the product it supports, be sure |
to read the general information under "Special Notices" in |
Ltopic FRONT 1. |
|
|

EDITION Edition Notice

First Edition (June 1995)

This edition applies to Version 3, Release 1 of IBM TCP/IP for MVS,
Program Number 5655-HAL for use with the MVS/XA and MVS/ESA Operating
Systems.

Order publications through your IBM representative or the IBM branch
office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback
appears facing Chapter 1. If the form has been removed, comments may

be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 545 Building 657

A Beginner's Guide to MVS TCP/IP Socket Programming

http://www.kev009.com/wp/boo2pdf

A Beginner's Guide to MVS TCP/IP Socket Programming

P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right
to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

? Copyright International Business Machines Corporation 1995. All
rights reserved.

Note to U.S. Government Users —- Documentation related to restricted
rights —-- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

ABSTRACT Abstract

This publication provides basic TCP/IP socket programming information to
MVS program developers who plan to use the socket programming interfaces
of IBM TCP/IP Version 3 Release 1 for MVS. The main focus is the Sockets
Extended, REXX sockets, IMS sockets and CICS sockets programming
interfaces of IBM TCP/IP Version 3 Release 1 for MVS. The reader is not
required to be familiar with C programming syntax. Code samples are
provided in COBOL, PL/I, assembler and REXX. No prerequisite socket
programming knowledge 1is required, but the reader is supposed to be
familiar with the MVS environment and its subsystems, including IMS and
CICS, and the related application program development tools and
techniques.

(355 pages)

CONTENTS Table of Contents

TITLE Title Page

NOTICES Notices

EDITION Edition Notice

ABSTRACT Abstract

CONTENTS Table of Contents

FIGURES Figures

TABLES Tables

FRONT 1 Special Notices

PREFACE Preface

PREFACE.1 How This Document is Organized
PREFACE.2 Related Publications

PREFACE.3 Additional Publications

PREFACE.4 International Technical Support Organization Publications
PREFACE.S Acknowledgments

1.0 Chapter 1. Cooperative Applications
1.1 The Basic Socket Concept

1.2 Cooperative Application Design Models
1.2.1 Application Model

1.2.2 Distribution Model

1.2.3 Communications Model

1.3 Cooperative Design Summary

Chapter 2. Introduction to TCP/IP Programming Interfaces
Choosing an API
Socket Application Programming Interfaces
Remote Procedure Call Programming Interfaces
X-Windows Programming Interfaces
X/Open Transport Interface (XTI)
SNMP Agent Distributed Programming Interface (DPI)
Kerberos Programming Interface
Chapter 3. TCP/IP Concepts for Socket Programmers

(3]
O

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

3.1 TCP/IP Protocol Layers

3.2 Addresses

3.2.1 IP Addresses

3.2.2 Ports

3.3 Sockets

3.4 Socket Types

3.5 Encapsulation

3.6 Addressing Families

3.6.1 Integrated Sockets

3.7 General Socket Program Structure

3.7.1 Iterative Server

3.7.2 Concurrent Server

3.7.3 Socket Program Categories

4.0 Chapter 4. The IBM TCP/IP for MVS Socket APIs
4.1 API Relationship

4.2 IBM TCP/IP for MVS C-Sockets

4.3 Sockets Extended Call Interface

4.3.1 PL/I Programs

4.3.2 User Abend 4093

4.4 Sockets Extended Assembler Macro Interface

REXX Sockets

Pascal API

Inter-User Communication Vehicle (IUCV) Sockets
Chapter 5. Your First Socket Program

Type Conversion Between Programming Languages

Iterative Server Program Structure

Initialize the Socket API

(21 (G2l (G2 NN (G2l TLNgy SNy o
W N = O oy [

5.3.1 Initializing a C-socket Program

5.3.2 Getclientid

5.4 Create a Socket

5.5 Bind a Socket to a Specific Port Number

5.6 Listen for Client Connection Requests

5.7 Accepting Connection Requests from Clients

5.8 Transferring Data Over a Stream Socket

5.8.1 Streams and Messages

5.8.2 Reading and Writing Data From and To a Socket
5.8.3 Data Representation

5.9 Closing a Connection

5.9.1 Half Close

5.9.2 The Linger Option

5.10 Blocking, Non-blocking and Asynchronous Socket Calls
5.11 Socket Programs and MVS Security

5.11.1 User or Client Authentication

5.11.2 Authorizing Access to MVS Resources

6.0 Chapter 6. Native MVS Concurrent Server Program
6.1 Concurrent Servers in the Native MVS Environment
6.2 MVS Subtasking Considerations

6.2.1 Access to Shared Storage Areas

6.2.2 Data Set Access

6.2.3 Task and Workload Management

6.2.4 Security Considerations

6.2.5 Reentrant Code

6.3 Program Structure

6.4 Initializing the Concurrent Server Program
6.5 Select Processing

6.6 Accepting Connection Requests from Clients
6.6.1 Give Socket to Subtask

6.6.2 Take Socket from Main Process

7.0 Chapter 7. Socket Client Programs

7.1 General REXX Subroutine for Socket Calls

1.2 Initializing the Socket API

7.2.1 Getclientid

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

1
(O8]

1
(3]
—

1
[l

Chapter 8.

00 oo oo |oo |
[V NON o (@l (€]

8.4

9.0 Chapter 9.

2.1

2.2

2.3

9.3.1

9.3.2

9.3.3

9.3.4

2.4

2.5

10.0 Chapter 10.

10.1

10.2

10.3

10.4

11.0 Chapter 11.

11.1

11.2

11.3

11.4

Appendix A.
Datagram
Datagram
Datagram
Datagram
Appendix B.

Sample S
Sample S
Sample S

Appendix C.

Appendix D.

Appendix E.

Appendix F.

Appendix G.
TPICLNID
TPIINTOA
TPIIADDR
TPIIOCTL

ol ol ol ol N N Ll N BN ol ol LN ol ol el vl N ON (@ @ @N (@ (e vol (ol voa [soll =10 b= =1 s =1 =]
s jwdviFlodiFlolkslwidiFlodiFo s lwidi-lo ks lw i - lo ks lw o - o |

]
N

Sample Stream

Connecting a Client to a Server

Accessing a Host Entry Structure with EZACICO08
Closing the Socket
Terminating the REXX Socket API

Datagram Socket Programs

Datagram Socket Characteristics
Datagram Socket Program Structure

Use of Connect on a Datagram Socket
Transferring Data Over a Datagram Socket

IMS Sockets

IMS and TCP/IP Networks

Overview of IMS Sockets

Concurrent Server in an IMS Environment
IMS Listener Security Exit
Remote Client Design Considerations
Explicit-mode Server Program
Implicit-mode Server Program

Dual-purpose IMS Programs

IMS Recovery Considerations

CICS Sockets

CICS and TCP/IP Networks

Overview of CICS Sockets

Concurrent Server in a CICS Environment
Link Editing CICS Socket Programs

Debugging and Tracing Socket Programs

Exception Handling
Application Trace Facilities
TCP/IP Packet Trace

IUCV Socket API Trace Function

Sample
Socket
Socket
Socket
Socket
Sample

Datagram Socket Programs
COBOL Server Program
COBOL Client Program

C Server Program

C Client Program

Stream Socket Programs

tream Socket COBOL Server
tream Socket COBOL Client
tream Socket C Server

Sample

Sample

Sample

REXX Client
REXX Server
NetView NETSTAT Client REXX
NETSTAT Server REXX

Sample

PL/I Server
PL/I Server

Socket

Socket C Client

IMS Socket Programs

Dual Purpose Implicit Mode IMS Server Program

C Client Program to Test Dual Purpose IMS Server
Explicit Mode IMS Server Program

IMS Listener Security Exit

CICS Socket Program

Stream Socket COBOL Program for CICS
C Version of EZACICSC

REXX Socket Programs

PLI Socket Programs

Utilities for Sockets Extended Programs

Obtain Values for TCP/IP Client ID
Convert IP Address to Character String

Convert IP Address Character String to Full-word

Convert IOCTL Command Name to Command

TPIWAIT Place Calling Process in Wait
TPIRACF Interface to RACROUTE REQUEST=VERIFY User SVC

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

G.7 User SVC for RACROUTE REQUEST=VERIFY
G.8 TPIAUTH Issue RACROUTE REQUEST=AUTH for FACILITY Class
H.O Appendix H. Sample MVS Concurrent Server
H.1 TPI Concurrent MVS Server
H.1.1 TPIMAIN Concurrent Server Main Process
H.1.2 TPILOGWT Logwriter Data Services Task
H.1.3 TPISERV Concurrent Server Subtask
H.1.4 TPISERVD Concurrent Server DB2 Access
H.1.5 TPISEND Send Data Over a Stream Socket
H.1.6 TPIRECV Receive Data Over a Stream Socket
H.1.7 TPIMCB Macro Main Task Control Block
H.1.8 TPISCB Macro Subtask Control Block
H.1.9 TPILOG Macro Issue Logwriter Request
H.1.10 TPITRC Macro Issue Trace Request
H.1.11 TPIMASK Macro Set and Test Bits in Select Mask
H.1.12 TPIREC Macro DB2 Row Layout
H.1.13 TPIMSO Macro Socket Descriptor Table
H.2 TPI REXX Client Application
H.2.1 TPI REXX Client
H.2.2 TPI REXX Client ISPF Panel Definition
H.2.3 TPI REXX Client ISPF Message Definitions
H.3 TPI DB2 Table Definition
H.4 Sample Log from TPI Server Execution
I.0 Appendix I. Sample Compile and Link JCL Procedures
I.1 Assemble JCL Procedure
1.2 COBOL Compile JCL Procedure
1.3 C/370 Compile JCL Procedure
1.4 Link/Edit JCL Procedure
ABBREVIATIONS List of Abbreviations
INDEX Index
COMMENTS ITSO Technical Bulletin Evaluation REDOOO
FIGURES Figures
1. Sockets in TCP/IP 1.1
2. TCP/IP Lavers 1.1
3. The Application Model — Where Do We Split the Application? 1.2.1
4. Peer-to-Peer Distribution Model 1.2.2
5. Client/Server Distribution Model 1.2.2
6. Conversational Communications Model 1.2.3
7. Remote Procedure Call Communications Model 1.2.3
8. Message Queuing Communications Model 1.2.3
9. Socket Programming Interface 2.2
10. RPC Programming Interface and Protocol Lavers 2.3
11. X-Windows Client and Server Hosts 2.4
12. X/Open Transport Laver Programming Interface 2.5

13. The TCP/IP Protocol Stack 3.1

14. TP Address Classes 3.2.1

15. Multihomed TP Host 3.2.1

16. The Port Concept 3.2.2

17. Port Number Assignment 3.2.2

18. The Socket Concept 3.3

19. Socket Calls for a Connection Oriented Protocol 3.4

20. Socket Calls for a Connectionless—-Oriented Protocol 3.4
21. TCP/IP Encapsulation 3.5

22. Integrated Sockets in OpenEdition/MVS 3.6.1

23. Socket ILibraries in an OpenkEdition/MVS Environment 3.6.1
24. Tterative Server Main ILogic 3.7.1

25. Concurrent Serxrver Main Logic 3.7.2

26. Socket APT Relationship to TCP/IP Protocol Lavers 4.1
27. Sockets Extended Macro Interface Storage Areas 4.4

28. Tterative Server Main ILogic 5.2

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

29. TIdentifving Your TCP/TIP Address Space via TCPNAME 5.3
30. Tdentifving Your Own Program with a Client ID 5.3
31. The Client ID Structure 5.3
32. MVS TCP/IP Socket Descriptor Table 5.4
33. The TCP Buffer Flush Technigue 5.8.1
34. Big or Little Endian Bvte Order for a 2-Bvte Integer 5.8.3
35. Closing Sockets 5.9
36. Serialize Access to a Shared Storage Area 6.2.1
37. Synchronize Use of a Common Service Task 6.2.1
38. Concurrent Server in an MVS Address Space 6.3
39. Host Entry Structure 7.3.1
40. Datagram Server Program Structure 8.2
41. TIMS Sockets Structural Overview 9.2
42. FExplicit-mode Server Program Initiation 9.3.3
43. Tmplicit-mode Server Program Initiation 9.3.4
44. TIMS Assist Module Process Flow 9.3.4
45. Dual-purpose IMS Program Input/Output Flow 9.4
46. CICS Socket Application Overview 10.2
47. CICS Sockets Infrastructure 10.2
48. Concurrent Server in CICS 10.3
49. CICS Listener Transaction Regquest Message Format 10.3
50. Sample Packet Trace Output 11.3
51. Packet Trace of TCP Connection: SYN Segment 11.3
52. Packet Trace of TCP Connection: SYN + ACK Segment 11.3
53. Packet Trace of TCP Connection: ACK Segment 11.3
54. Socket APT Trace: INITAPT Call 11.4
55. Socket APT Trace: GETCLIENTID Call 11.4
56. Socket APT Trace: SOCKET Call 11.4
57. Socket API Trace: BIND Call 11.4
58. Socket APT Trace: LISTEN Call 11.4
59. Socket APT Trace: ACCEPT Call 11.4
60. Socket APT Trace: RECEIVE Peek Call 11.4
61. Socket APT Trace: RECEIVE Call 11.4
62. TPTI Application Components H.O
63. TPI Server Address Space Logic H.1
TABLES Tables
1. IBM TCP/IP Version 3 Release 1 for MVS Socket TLibraries and MVS
Environments 2.2
2. Which Socket Type to Use 3.4
3. Network Interface and Typical MTU Values 3.5
4. Addressing Families and Programming Interfaces 3.6
5. Functional Comparison of the TCP/IP Socket APTs 4.1
6. Tanguage Type Definition Conversion 5.1
7. FEffect of Shutdown Socket Call 5.9.1
8. FEffect of Blocking or Non-blocking Mode 5.10
9. TImportant TUCV Socket Trace Entrv Fields 11.4

FRONT _I Special Notices

This publication is intended to help application developers to develop MVS
TCP/IP socket based client/server programs. The information in this
publication is not intended as the specification of any programming
interfaces that are provided by IBM TCP/IP Version 3 Release 1 for MVS.
See the PUBLICATIONS section of the IBM Programming Announcement for IBM
TCP/IP Version 3 Release 1 for MVS for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

not imply that IBM intends to make these available in all countries in
which IBM operates. Any reference to an IBM product, program, or service
is not intended to state or imply that only IBM's product, program, or
service may be used. Any functionally equivalent program that does not
infringe any of IBM's intellectual property rights may be used instead of
the IBM product, program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific
hardware and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus
Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of
this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate
and integrate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

ACF/VTAM AD/Cycle
Advanced Peer-to-Peer Networking AIX
AIX/6000 AnyNet
Application Development APPN
AS/400 BookManager
C Set ++ c/2

C/370 CICS

CICS 0S/2 CICS/ESA
CICS/MVS CICS/6000
COBOL/ 2 COBOL/370
CUA DATABASE 2
DatagLANce DB2

DFSMS DFSMS/MVS
Distributed Relational Database Architecture DRDA

Enterprise Systems Architecture/370
Enterprise System/3090

Enterprise Systems Architecture/390

Enterprise System/9000

Enterprise Systems Connection Architecture ES/3090

ES/9000 ESA/370

ESA/390 ESCON

IBM IMS Client Server/2
IMS CS/2 IMS/ESA

MQSeries MVS/ESA

OpenEdition Operating System/2
0S/2 Presentation Manager
PS/2 QMF

RACF S/370

S/390 SAA

SMP/E System/370
System/390 Systems Application Architecture
VTAM 3090

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

The following terms are trademarks of other companies:
Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other trademarks are trademarks of their respective companies.

PREFACE Preface

This book is for newcomers in the world of IBM TCP/IP for MVS socket
programming.

We do not write for the experts who have written complicated C-socket code
for the last 20 years or so. On the contrary, our focus is on those of
you who have written MVS application programs for CICS, IMS or batch
during the last many years, but have never written a socket program. We
do not expect that you are familiar with C, and we do not expect you to
learn C in order to develop socket programs. This book will illustrate
most of the coding examples in COBOL, PL/I, assembler and REXX, which we
believe 1is what most of you are familiar with. Some samples will also be
shown in C.

We will focus on the Sockets Extended programming interfaces that are
supplied with IBM TCP/IP Version 3 Release 1 for MVS. Emphasis will be on
stream sockets, as the major part of all TCP/IP applications are stream
socket applications.

Readers who already know sockets but who have little experience in IBM
TCP/IP for MVS sockets may also benefit from this book.

PREFACE.1 How This Document is Organized

PREFACE.2 Related Publications

PREFACE.3 Additional Publications

PREFACE.4 International Technical Support Organization Publications
PREFACE.5 Acknowledgments

PREFACE.1 How This Document is Organized

The document is organized as follows:

Chapter 1, "Cooperative Applications"

In this introductory chapter we will present some of the fundamental
design considerations you have to make before you decide on a specific
application design.

Chapter 2, "Introduction to TCP/IP Programming Interfaces"

The socket programming interface is Jjust one of the programming
interfaces that are used in a TCP/IP-based network. In this chapter
we give you a short introduction to each of the programming interfaces
that are delivered with IBM TCP/IP Version 3 Release 1 for MVS.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

Chapter 3, "TCP/IP Concepts for Socket Programmers"

We do not expect that you are an expert in TCP/IP protocols, but a few
basic concepts must be understood in order to develop good socket
programs. In this chapter we will explain these basic concepts,
without going into too much detail. Other books are devoted solely to
the purpose of explaining the TCP/IP protocols, and we will refer you
to some of these books for more detail.

Chapter 4, "The IBM TCP/TIP for MVS Socket APIs"

In this chapter we will introduce you to each of the individual socket
programming interfaces that are delivered with IBM TCP/IP Version 3
Release 1 for MVS. These include C-sockets, Sockets Extended (both
the call instruction API and the assembler macro API), REXX sockets,
Pascal sockets and some of the older socket programming interfaces
that were used with previous versions of TCP/IP for MVS. The main
focus of this book is on the Sockets Extended programming interfaces.

Chapter 5, "Your First Socket Program"

This chapter includes all the basic socket programming techniques you
need to develop socket programs in MVS. We will guide you through the
development of a Sockets Extended iterative COBOL server program, and
we will explain how you work with distinct messages in a stream
protocol like the Transmission Control Protocol (TCP).

Chapter 6, "Native MVS Concurrent Server Program"

For those of you who have the requirement to develop high performance
server applications in MVS, this chapter will give you information on
how you develop a concurrent server in a native MVS address space.

The concurrent server in this chapter is based on the Sockets Extended
assembler macro interface.

Chapter 7, "Socket Client Programs"

It is expected that the majority of socket applications in an MVS
environment is server applications, but you will from time to time

also have to develop socket client programs in MVS. In this chapter
we will add client specific information to what you learned about
socket programs in the two previous chapters. The client issues are

illustrated by a sample client that uses REXX sockets.

Chapter 8, "Datagram Socket Programs"

In the three previous chapters we confined ourself to stream sockets
based on the Transmission Control Protocol (TCP). The majority of
socket applications use stream sockets, but occasionally you may have
the need for a datagram socket application. This chapter explains the
specific characteristics of datagram socket applications based on the
User Datagram Protocol (UDP).

Chapter 9, "IMS Sockets"

This chapter explains how you implement socket programs in an IMS
dependent region. It also includes guidelines on how you can use the
same IMS Message Processing Program (MPP) from both IBM 3270 terminals
and socket clients.

Chapter 10, "CICS Sockets"

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

If your requirement is to implement socket programs as CICS
transaction programs, this chapter will give you information on how
you do that.

Chapter 11, "Debugging and Tracing Socket Programs"

From time to time it may be necessary to debug a socket program that
does not behave as you intended. 1In this chapter we give you some
guidance on how you handle socket return codes, and how you can trace
the Internet Protocol (IP) packets that are forwarded over the IP
network as a result of your socket calls.

This book includes a fairly extensive appendix, where we have placed a
number of sample programs we developed as part of this redbook project.
The samples are of no use by themselves; they only serve an educational
purpose. We do not guarantee that the samples show the best or only way
of implementing socket programs; they show how we implemented socket
programs. We will refer you to specific samples throughout the text and
we will encourage you to study them, as they might give you that extra
clue on how you could proceed with your own socket programs. But
remember: the best way to learn is to do it yourself.

All the COBOL samples are developed with the COBOL ANSI85 standard, which
allows lowercase keywords and identifiers.

Appendix A, "Sample Datagram Socket Programs"

Sample datagram socket programs in COBOL and in C.

Appendix B, "Sample Stream Socket Programs"

Sample stream socket programs written in COBOL and in C.

The COBOL socket server is the sample iterative server program we
refer to in Chapter 5, "Your First Socket Program" in topic 5.0.

Appendix C, "Sample IMS Socket Programs"

In this appendix you find sample explicit and implicit mode IMS socket
programs written in COBOL, and sample remote clients used to test the
IMS socket programs with, written in COBOL and C.

Appendix D, "Sample CICS Socket Program"

These are sample CICS socket programs. You will find a COBOL stream
socket program that acts as an echo server in CICS, and you will find
a C implementation of the EZACICSC sample program that is distributed
with IBM TCP/IP Version 3 Release 1 for MVS.

Appendix E, "Sample REXX Socket Programs"

Here you find a couple of sample REXX socket programs. One of these
samples is an implementation of a NETSTAT function in NetView. This
function is based on a REXX client that runs in the NetView address
space and communicates with a REXX server that runs in a batch TSO
address space.

Appendix F, "Sample PLT Socket Programs"

This appendix contains sample PL/I socket programs that use the
Sockets Extended API.

A Beginner's Guide to MVS TCP/IP Socket Programming

10

A Beginner's Guide to MVS TCP/IP Socket Programming

Appendix G, "Socket Utilities for Sockets Extended Programs"

This appendix contains a number of useful utility programs we
developed for use from Sockets Extended programs.

Appendix H, "Sample MVS Concurrent Server"

This is an Sockets Extended assembler macro sample application that is
implemented as a multitasking concurrent server in MVS.

Appendix I, "Sample Compile and Link JCIL Procedures"

Here you find the compile and link edit JCL procedures that were used
to compile and link the sample programs shown throughout this book.

PREFACE.2 Related Publications

The publications listed in this section are considered particularly
suitable for a more detailed discussion of the topics covered in this
document.

IBM TCP/IP for MVS: User's Guide, SC31-7136

IBM TCP/IP for MVS: Customization and Administration Guide,
SC31-7134-00

IBM TCP/IP for MVS: Offloading TCP/IP Processing, SC31-7133
IBM TCP/IP for MVS: Programmer's Reference, SC31-7135
Performance Tuning Guide, SC31-7188

IBM TCP/IP for MVS: CICS TCP/IP Socket Interface Guide and Reference,
SC31-7131

IBM TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference, SC31-7186

IBM TCP/IP for MVS: Application Programming Interface Reference,
SC31-7187

IBM TCP/IP for MVS: Quick Reference, SX75-0095

PREFACE.3 Additional Publications

John Tibbetts and Barbara Bernstein 1992, Building Cooperative
Processing Applications using SAA, John Wiley & Sons, Inc. - ISBN
0-471-55485-5

W. Richard Stevens 1994, TCP/IP Illustrated, Volume 1 - The Protocols,
Addison Wesley - ISBN 0-201-63346-9

Gary R. Wright and W. Richard Stevens 1995, TCP/IP Illustrated, Volume
2 — The Implementation, Addison Wesley - ISBN 0-201-63354-X

W. Richard Stevens 1990, UNIX Network Programming, Prentice Hall -
ISBN 0-13-949876-1

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

PREFACE.4 International Technical Support Organization Publications

TCP/IP Tutorial and Technical Overview, GG24-3376

CICS/ESA and TCP/IP for MVS Sockets Interface, GG24-4026
Client/Server Computing with IMS/ESA Using APPC, GG24-3981
IBM TCP/IP V3R1 for MVS Implementation Guide, GG24-3687

A complete list of International Technical Support Organization
publications, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,

GG24-3070.

To get listings of ITSO technical bulletins (redbooks) online, VNET users
may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or
by faxing 1-800-284-4721. Visa and Master Cards are accepted.

Outside the USA, customers should contact their IBM branch office.

sets, called GBOFs, which relate to specific functions of interest.
IBM employees and customers may also order redbooks in online format
on CD-ROM collections, which contain the redbooks for multiple

|
|
|
|
|
|
| Customers may order hardcopy redbooks individually or in customized
|
|
|
| products.

|

|

PREFACE.5 Acknowledgments

The advisor for this project was:

Alfred Bundgaard Christensen
International Technical Support Organization, Raleigh Center

The authors of this document are:

Alfred Bundgaard Christensen
International Technical Support Organization, Raleigh Center

Reinier B. Bakels
IBM Netherlands

This publication is the result of a residency conducted at the
International Technical Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance
provided in the production of this document:

Carla Sadtler
International Technical Support Organization, Raleigh Center

A Beginner's Guide to MVS TCP/IP Socket Programming

12

A Beginner's Guide to MVS TCP/IP Socket Programming

Joost G.M. Fonville
IBM Netherlands

Christopher Mason
IBM International Education Center La Hulpe, Belgium

Irene Liu
Host PL/I Development, Santa Teresa

Dave Herr

Lawrence Garrettson

Karen Momenee

Karen Gould

TCP/IP Development, Research Triangle Park, Raleigh

1.0 Chapter 1. Cooperative Applications

In the development of communication applications, such as TCP/IP
applications, there are a number of common design topics that apply
regardless of the actual technology being used. In this chapter we will
discuss these topics in order to provide a common ground for the following
chapters that are more implementation oriented.

TCP/IP programming is basically a question of creating cooperative
applications based on the TCP/IP transport protocols and the programming
interfaces associated with these protocols.

—

—
N

1 The Basic Socket Concept
Cooperative Application Design Models
Cooperative Design Summary

—
o8]

1.1 The Basic Socket Concept

Communications applications receive data from a network and send data to a
network. In a way, communicating with a network is similar to reading
from and writing to any other device.

The socket concept essentially builds a communications application program
interface (API) on this similarity. The socket API is said to be based on
an open/close/read/write paradigm, as the most important socket routine
calls are similar to the calls that are used to access flat files.

For a positioning of sockets, we can extend the analogy with flat files.
For many applications, flat files offer exactly the functions required by
the application; while in other cases more functionality is required, and
the application requirements are best met by a database system instead of
a flat file. Under the covers, databases eventually are implemented as a
set of flat files. Databases can be accessed through specialized APIs
from user-written application programs. Also, databases can be accessed
using tools such as query programs that may even make it unnecessary to
write any application program yourself.

Similarly, TCP/IP provides application program interfaces beyond the

socket interface. 1In addition, TCP/IP provides standardized tools: system
applications, that require no user-written application at all (just as you
can access a database with a query tool). Yet, internally most of these

facilities are based on sockets, as is shown in Figqure 1.

A Beginner's Guide to MVS TCP/IP Socket Programming 13

A Beginner's Guide to MVS TCP/IP Socket Programming

user | |_ user

| |
| appli- ISI_____ IS| appli- |
| cation |_| |_| cation |

|

A socket application

user	system _		_ system	user		
appli-	func-	S		S] func-—	appli-
cation	tion			_	tion	cation

Applications indirectly based on socket function: for instance RPC

system _| |_ system

| |
| appli- ISI____ IS| appli- |
| cation |_| |_| cation |

|

System applications based on sockets.

Figure 1. Sockets in TCP/IP

If you have decided that you are going to write TCP/IP applications, you
have the choice to either use the socket interface directly, or use it
through one of the other TCP/IP-provided interfaces, such as RPC (more
about RPC in "Remote Procedure Call Programming Interfaces" in topic 2.3).

Finally, TCP/IP products provide built-in system applications for various
purposes such as file transfer (FTP), terminal emulation (TELNET) and
remote file access (Network File System).

Figure 2 shows the various TCP/IP facilities in perspective. It shows how
user-written socket programs in fact use an interface that is also used by
many TCP/IP system applications and facilities. Not all components shown
in Figure 2 will be discussed in this book. For a comprehensive
introduction we would recommend another redbook, TCP/IP Tutorial and
Technical Overview, GG24-3376.

Juser | |FTP | |NF'S | |user |

| TCP | -l | ___ |UDP |
| sock |Kerb |XWin |Rexec|SMTP | TELNET | |DNS|TFTP| RPC |NCS|SNMP |sock| socket
| | | | | | M | [| | <_interface
T C P | U D P |
| [
I P and I C M P | ARP | RARP |

support for various "physical" communication facilities |
| | | | | | [| |

Figure 2. TCP/IP Layers

In most situations, it is the application requirements that dictate which
solution is best. Sometimes the choice is obvious from an application
point of view. At other times it is not obvious, and it might be useful
to step back at some point in time (preferably early in a project) in
order to critically review the requirements leading to a particular
choice.

A Beginner's Guide to MVS TCP/IP Socket Programming

14

A Beginner's Guide to MVS TCP/IP Socket Programming

Occasionally you need a facility to access someone else's application over
a network, or you create a service that can be accessed by someone else's
application. In either case, you implement just one side of the
communication, and the protocols and other application related
specifications may be fully defined in advance.

On other occasions, you are in a position to design, from scratch, an
application that partly runs on one machine and partly on another machine.
Typically this is the case with intelligent workstations providing a
graphical user interface to applications that run on other machines in the
network where, for example, the database is located. Often this is called
client/server computing, but actually client/server computing is just one
of the models for cooperative application design, as we will discuss in
the following sections.

1.2 Cooperative Application Design Models

In a cooperative application, one or more programs cooperate to implement
the full application. When you design a cooperative application, you must
decide where the application is split into separate programs, what the
role of each program is, and how the programs communicate with each other
in order to implement the appearance of a full cohesive application.

Cooperative application design can be very complex; however, viewed from a
high-level perspective, the design considerations can be grouped into
three major categories, which are known as:

1. The application model - where do you split your application into
separate application parts?

2. The distribution model - what is the role of each application part?
3. The communication model - what happens between the application parts?
1.2.1 Application Model

—

.2.2 Distribution Model
.2.3 Communications Model

—

1.2.1 Application Model

The application model describes where your application is split, so one
part of the application is executing on one system and other parts of the
application are executing on other systems.

| oo | Mouse, keyboard
[and Display

A Beginner's Guide to MVS TCP/IP Socket Programming 15

A Beginner's Guide to MVS TCP/IP Socket Programming

|

| |[Presentation] |
Distributed | | Logic | |<__ Distributed Display
Presentation | [(Screen Scrapers)

|] | |<__ Distributed Windows

|| [| (Xwindows)

[| |<__ Distributed Dialog

[[

[[

| |Traditional ||
Distributed | |Application ||<__ Distributed Function
Function | | Logic ||

[[

[[

[[

| | |<__ Distributed Database Access

[| | (DRDA)
Distributed | | | |<__ Distributed File Access
Data | | || (NF'S, DDM)
Access | |[Data access ||

| |Logic I

[[

| ~ |

v
| Data |

Figure 3. The Application Model - Where Do We Split the Application?

Three basic application models exist as follows:

1. Distributed Presentation

The main body of the application, including data access and business
logic is in one system, while the user dialog is distributed to
another system. For a distributed presentation application, you may
consider using some standardized protocols. These may include a
simple 3270 data stream front-ended with screen-scrapers of various
kind to a more sophisticated distributed dialog software like ISPF

Version 4. 1In a TCP/IP environment, you have an excellent choice for

distributed presentation applications, which is the X-Windows
programming interfaces.

2. Distributed Function
In a distributed function application, there is no easy way to

characterize the split, which is located somewhere in the middle of
your business logic. You have parts of the business logic in one

system and other parts of the business logic on other systems. If you
use this model, you have to design and implement your own application

protocol. This would entail message formats, state switching, and

exception handling, just to mention the most important aspects of such

a design.

Most of your TCP/IP socket based applications will probably be located

within this category.

3. Distributed Data Access

A Beginner's Guide to MVS TCP/IP Socket Programming

16

A Beginner's Guide to MVS TCP/IP Socket Programming

With distributed data access, you have your business logic and
presentation logic in one system, and your data or parts of it on
another system. 1In this area, you will find more very powerful
standardized protocols ranging from Structured Query Language (SQL)
using Distributed Relation Data Architecture (DRDA) to simpler remote
file access protocols like Network File System (NFS) in a TCP/IP
environment or Distributed Data Management (DDM) in an SNA
environment.

You may also use the Network DataBase (NDB) component of IBM TCP/IP
for MVS for distributed access to DB2/MVS databases, but be aware that
the NDB protocols do not implement any two-phase commit functions, so
your local data updates are not synchronized with your DB2/MVS
updates.

Distributed data access is often an attractive solution for
implementing cooperative applications because your programs, with a
correct implementation, are more or less unaware of the fact that the

data is being accessed across a network. It makes it easy to
implement programs and relatively easy to port them to other
platforms.

Distributed data access may be very easy to implement, but there are
situations, not only where application characteristics can lead to
unacceptable poor performance in a distributed data access
environment, but also where a distributed function design might prove
to be a more feasible solution, at least from a performance point of
view.

1.2.2 Distribution Model

The distribution model describes how the two parts of your application are
distributed and how they interact with each other. The following are the
three basic distribution models:

1. A Peer-to-Peer model

In this model, no single part of the application is by definition
slave or master, both parts are peers and both parts can initiate or
terminate a conversation with the other.

This model may well be flexible, but it is often difficult to
implement in real life. It can in many situations be substituted by
two applications that are based on the following client/server
distribution model instead.

|Process 1| < > |Process 2|

Figure 4. Peer-to-Peer Distribution Model
2. A Client/Server model

A Beginner's Guide to MVS TCP/IP Socket Programming 17

A Beginner's Guide to MVS TCP/IP Socket Programming

This is the most common distribution model. One part of your
application (the client side) makes requests of the other part (the
server side) which performs some service and sends back a reply.

The roles of the client and the server are specialized and constrained
to a certain predefined type of interaction and function.

| Request \
|

| Client | | Server

| |
~ Reply |
|

Figure 5. Client/Server Distribution Model

This model is relatively simple to implement, and most of your
cooperative applications will most likely use the client/server
distribution model.

The socket programming interface offers you a set of function calls
that are very useful in making it easy for you to write cooperative
applications that are based on the client/server distribution model.

3. A Processor Pool model

A processor pool model is very useful for parallel processing, as its
basic idea is to have a coordinator process break a given job into
small pieces, parcel these pieces out to a number of parallel work
processes and finally assemble the individual result pieces into a
final result.

This distribution model will be used for high performance specialized
applications. It is difficult to implement.

1.2.3 Communications Model

The third and final design model category describes what happens between
the two parts of your application. How is the communication flow?

Basically communication models can be grouped into three major groups:

1. A Conversational model

In a conversation, the two application parts implement a half-duplex,
flip/flop application protocol. This has nothing to do with the
transport protocol, which may very well be a full-duplex protocol like
a TCP protocol. Here we focus on how the two application parts
control their conversation. The conversation is synchronous; one side
sends data, and the other side receives data. All components of the
network must be available for a conversation to take place.
Application programs must include logic to deal with network failures,
which will break the conversation at unpredictable points. A
well-implemented conversational protocol may include elements for
coordinating synchronization points. If your distributed application

A Beginner's Guide to MVS TCP/IP Socket Programming 18

A Beginner's Guide to MVS TCP/IP Socket Programming

relies on synchronized updates of data at both involved end points,
you will probably use a conversational model.

SNA LU6.2 protocols, with Common Programming Interface -
Communications (CPI-C) used as a programming interface, is an
excellent choice for an application that requires a conversational

model.
Process 1 Process 2
| Receive Data
A\
Send Data

Receive Data

|
. |
. (Waiting)

A\
_Send Data
| (Processing) .
\% . (Waiting)
Send Data _
Receive Data |
| (Processing)

| |
| |
| |
| |
| |
| |
| |
. |
| |
| |
| |
| |
| |
| | v
| |

| |
| |
| |
| |
| |
| |
| |
| Receive Data |
| |
| |
| |
| |
| |
| |
| |

Figure 6. Conversational Communications Model

If you are using the socket programming interfaces, you have to build
your own conversational protocol control (state control and state
transition logic) into your application, because the socket
programming interface does not enforce conversation states.

2. Remote Procedure Call model

This is a well-known communications model in the TCP/IP community
where you will find more implementations based on this model. The
basic concept of this model is call subroutine and return results.

Communication between the parts is synchronous; the requester calls a
subroutine and blocks until the subroutine returns. In an RPC
implementation, the subroutine is not part of the calling program but
may be located on another system to which the call parameters are
passed. The routine 1is executed and the return parameters are
returned to the originating system where they are passed back to the
calling program.

The Remote Procedure Call model is a simple and easy-to-use
communication model.

RPC Process 1 RPC Server

|
\Y

|
|
|
Call Rtnx(,,)_|

|
|
|
|_>Pass input

A Beginner's Guide to MVS TCP/IP Socket Programming 19

A Beginner's Guide to MVS TCP/IP Socket Programming

to Rtnx

. (Waiting) |Rtnx |
| |

| |
| |
| |
| |
| Return the |
| |
| |
| |
| |

__result

Figure 7. Remote Procedure Call Communications Model

IBM TCP/IP for MVS implements both SUN's Open Network Computing /
Remote Procedure Call (ONC/RPC) and Appollo's Network Computing System
/ Remote Procedure Call (NCS/RPC).

In Open Software Foundation / Distributed Computing Environment
(OSF/DCE), you will find a third remote procedure call implementation,
which is called OSF/DCE Remote Procedure Call (DCE/RPC). In an MVS
environment, DCE/RPC is implemented by MVS/ESA OpenEdition Distributed
Computing Environment.

The CICS function called Distributed Program Link (DPL) between, for
example, CICS-0S/2 and CICS/ESA is also an implementation of a remote
procedure call model.

Message Queuing model.

The first two communication models were synchronous in the sense that
the two parts were in direct interaction with each other. 1In a
message queuing model, the requester queues a request for the receiver
to process at some time later. The requesting and the receiving
processes are fully asynchronous in nature. No connection exists
between the two.

Message queuing inside one operating system has been known for many
years, but it is not until recently that message queuing between
heterogeneous environments has been implemented in commercial
products.

To implement distributed applications based on a message queuing
model, you may use the IBM MQSeries products, which implement
recoverable store-and-forward queues and a uniform message queuing
programming interface (MQI) across a range of operating system
platforms.

Process 1

. MQOM1 MQM2
IMQPut | __
| | | | | | Process 2
| | [| [|
[I S I I O [I >| MQGet |
[N O [I O | |
| | | | | |
Process 3 | _ | _ | |
<_| | <_| | MQPut |
| | | | |

IMQGet | <_| |

A Beginner's Guide to MVS TCP/IP Socket Programming

20

A Beginner's Guide to MVS TCP/IP Socket Programming

Figure 8. Message Queuing Communications Model

1.3 Cooperative Design Summary

In your design of a cooperative application, you have to consider the
aspects of each of the models Jjust described. Just to recap a few of
these aspects:

Where can you split your application logic?
How well will alternative implementations perform?

How much effort must you put into implementing each of your
alternatives?

How do you synchronize updates if such synchronization is required?

It really does not matter if you are able to refer your application to a
specific set of models or not; what matters is that you consider the
aspects of each model when you lay out the design of your cooperative
application.

2.0 Chapter 2. Introduction to TCP/IP Programming Interfaces

In this chapter we will give you a short introduction to each of the
programming interfaces that are delivered with IBM TCP/IP Version 3
Release 1 for MVS.

IBM TCP/IP Version 3 Release 1 for MVS gives you a broad range of
programming interfaces that you can use to develop application programs
that interact with the TCP/IP protocol layers and services at various
levels.

Some of the programming interfaces are general use interfaces like the
socket and Remote Procedure Call interfaces. Others are special purpose
programming interface, like the SNMP DPI interface, which you will only
se if you have to develop an SNMP subagent.

o

N
—

SN NCH (NS NONN (N3N (S}
1 oy O > | I

Choosing an API

Socket Application Programming Interfaces

Remote Procedure Call Programming Interfaces
X-Windows Programming Interfaces

X/Open Transport Interface (XTI)

SNMP Agent Distributed Programming Interface (DPI)
Kerberos Programming Interface

2.1 Choosing an API

The sockets application programming interface is often referred to as
low-level, as opposed to interfaces such as RPC that are considered to be
high-level.

A Beginner's Guide to MVS TCP/IP Socket Programming

21

A Beginner's Guide to MVS TCP/IP Socket Programming

What should you choose for your particular application? Will it always be
a good idea to use a high-level programming interface? Well, it depends.
Typically, a high-level interface offers more ease of use at the expense
of flexibility. Sometimes, you would need flexibility. On other
occasions, the standardized functionality of a high-level interface is
exactly what you want.

Exploiting the facilities of IBM TCP/IP Version 3 for MVS is important for
maximum application development productivity.

This book will help you decide whether to use sockets or not. On several
occasions, we will tell you explicitly that sockets require you to decide
yourself on certain design aspects. What this means is that sockets give
you the freedom to decide on those aspects yourself, which may be really
what you want.

Whether you are going to use the basic programming interfaces or you are
going to use one of the higher-level interfaces for your application
depends on many factors.

What functions do you require in the programming interface?

What are the operating system platforms you have to support with your
application?

Which transport protocols do the operating systems support?

If a higher-level programming interface suits your needs, is the
supporting program products available on all the operating systems
where you want to implement your application?

Can your application justify the cost of purchasing the supporting
program products if it is available but not implemented?

What are your programming skills, do you need extra training in order
to use a specific programming interface and can you get that training
in the right time before your development project starts?

Other factors, like company policy, may of course influence the choice of
programming interface.

For some of your applications, you will probably end up with a choice of
basic TCP/IP socket programming in MVS.

2.2 Socket Application Programming Interfaces

The socket programming interface has been implemented in more variations,
but all implementations are in some way or another based on the original
Berkeley Software Distribution (BSD) socket implementation, which has its
roots in the UNIX environment. As we explained in the introduction,
socket programming is a generalized file access mechanism where your
socket programs interact with a socket in much the same way they would
interact with a file. You open and close a socket. You read and write
data from and to a socket. In a C program, you will actually use the same
system calls to access a socket and a file.

You must understand that, when we talk about sockets, we are talking about
a programming interface, not a protocol. The socket programming interface
is a programming interface to the TCP/IP protocol layers (mainly the

Transport Control Protocol (TCP) and User Datagram Protocol (UDP) layers).

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

But the socket programming interface also supplies you with interfaces to
the Internet Protocol (IP) layer directly, if you want to develop special
purpose network control applications. See Eigure 9 for an overview of the
relationship between the socket interface and the protocol layers.

| Socket |
| | Stream| |Datagram| programming |
| |socket| | socket | interface |
[.~ | |
| | | |
vV __ __ vV __ | |
| | | | | |Raw [
| TCP | | UDP | | |socket| |
| | | | [
| | | | | | |
Y4
IP and ICMP

Network Interfaces

Figure 9. Socket Programming Interface

The socket programming interface is a general-use, wide spread and very
flexible programming interface. It can be used for almost any application
type you want to implement. On the other hand, this is also the weakness
of the socket programming interface. The socket programming interface
does, for example, not include functions to establish and to control
conversation states between two applications that exchange data over a
socket connection. If conversation states make sense in the application,
then the application designer must design a conversation protocol based on
both logic in the application programs and state data transmitted as part
of the user data. 1If data is exchanged over a socket connection between
programs that execute on different hardware platforms, then the programs
must include logic to convert data from one data representation to the
other.

In an MVS environment, applications run either natively on MVS (batch, TSO
or started task), or exploit specific subsystems such as CICS or IMS. All
of these subsystems provide several alternatives for TCP/IP applications.

Table 1. IBM TCP/IP Version 3 Release 1 for MVS Socket Libraries and MVS Environments

|
| IBM TCP/IP Version 3 Release 1 for MVS Socket Libraries | Native MVS or TSO | CICs
: C—-sockets : X : X
: REXX Sockets : X :
: PASCAL Sockets : X :
| | |
A Beginner's Guide to MVS TCP/IP Socket Programming 23

A Beginner's Guide to MVS TCP/IP Socket Programming

	Macro	assembler	X
		assembler	X
Sockets Extended			
	Call	COBOL	X [
		PL/I	X

TCP/IP for MVS Version 3 offers you the opportunity to develop socket
programs in both the C language and other high-level languages, as is
shown in Table 1.

In addition to the listed IBM TCP/IP Version 3 Release 1 for MVS socket
libraries, you can in an MVS environment use OpenEdition/MVS sockets and
AnyNet/MVS sockets. We will in "Integrated Sockets" in topic 3.6.1,
return to a discussion of the relationship between these different socket
libraries.

C-sockets.

This programming interface is based on the original BSD socket
definitions and is widely used in the UNIX world. A C program using
this interface can be ported between MVS and most UNIX environments
with relative ease, if the program does not use any other MVS specific
services.

C-socket applications can be implemented in normal MVS address spaces,
CICS, and IMS transaction programs.

Sockets Extended - call interface.

This is a generalized call-based, high-level language interface to
socket programming. The functions implemented in this call interface
resembles the C-socket implementation, with some minor deviations.
The Sockets Extended call interface is available to COBOL, PL/1 or
assembler programmers.

Sockets Extended call based applications can be implemented in normal
MVS address spaces, CICS, and IMS transaction programs.

Sockets Extended - assembler macro interface.

This programming interface is fundamentally the same as the Sockets

Extended call interface, but it is implemented as assembler macros,

which adds some extra features like multitasking support and support
for asynchronous socket calls.

This programming interface can only be used to implement socket
applications in normal MVS address spaces (batch, TSO or started
task) .

REXX sockets.

This programming interface implements facilities for socket
communication directly from REXX programs via an address socket

function.

REXX socket programs can execute in TSO (either TSO online or TSO
batch) and in NetView.

A Beginner's Guide to MVS TCP/IP Socket Programming

24

A Beginner's Guide to MVS TCP/IP Socket Programming

Pascal sockets.

This is a Pascal socket interface allowing programmers to develop
socket applications in Pascal language.

Environments supported are normal MVS address spaces.

While this API conceptually provides the same sockets interface, the
actual implementation in routines is fairly different.

IUCV and VMCF sockets.

These are assembler macro based interfaces, which are relatively
low-level and complex to use. These APIs are primarily included in
IBM TCP/IP Version 3 Release 1 for MVS for compatibility reasons.

Reference information for all the IBM TCP/IP for MVS socket programming
interfaces can be found in IBM TCP/IP for MVS: Application Programming
Interface Reference, SC31-7187.

2.3 Remote Procedure Call Programming Interfaces

A Remote Procedure Call programming interface is located at a higher level
in the protocol stack than the socket based programming interfaces.
Somewhere down underneath the RPC interface the socket programming
interface is used, but the details of the socket interface are hidden for
the application programmer that uses the RPC programming interface.

| RPC Applications |

RPC
————————————— Programming
Interface
NCS/		ONC/
RPC		RPC
Socket		
————————————— Programming		
Interface		
TCP and UDP		
IP and ICMP		

| Network Interfaces |

Figure 10. RPC Programming Interface and Protocol Layers

The RPC programming interfaces offer more ease of use to the application
programmer than do the socket programming interfaces which makes the
network programming job somewhat easier to accomplish. The RPC

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

programming interfaces generally deal with things like different data
representation and some kind of state control over the dialog. On the
other hand this also implies some restrictions; a dialog is normally
limited to one procedure call. Each remote procedure call is stateless
and independent of either preceding or succeeding calls. If an RPC client
program requires more interactions with the server program, the state data
has to be carried back and forth as user data in the parameters passed on
each remote procedure call, or the server program has to implement some
kind of Scratch Pad Area (SPA) implementation where state data per client
is saved from call to call.

If you develop RPC programs, your only programming language choice is C.

In IBM TCP/IP for MVS you have two RPC implementations:

Sun Microsystems Open Network Computing / Remote Procedure Call
(ONC/RPC) .

Hewlet Packard Remote Procedure Call implementation, which is called
Apollo Network Computing System / Remote Procedure Call (NCS/RPC).

Please refer to IBM TCP/IP for MVS: Programmer's Reference, SC31-7135, for
reference information on both ONC/RPC and NCS/RPC.

2.4 X-Windows Programming Interfaces

If you want to develop distributed presentation programs, where your
application program is running in MVS and the user interface is
implemented on an X-Windows server in your IP network, you can use the
X-Windows application programming interfaces that are supplied with IBM
TCP/IP for MVS to develop X-Windows MVS client programs.

In an X-Windows environment, the term server is applied to the host where
the display shows up, and the term client is applied to the host where the
application program is executing.

Display,

X Window | | keyboard,
client host] | mouse

|
| MVS | ~
lapplication | |
| (X client) | v
| |
| X11.4 | | X server | X Window
| routines | | | server host
TCP/IP		TCP/IP

Figure 11. X-Windows Client and Server Hosts

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

One X server may be connected to many X clients thus sharing the physical
display and input devices among many application programs. The clients
may be located on different hosts.

MVS is only able to act as an X-Windows client, not as an X-Windows server
which means you can execute X-Windows applications in MVS that communicate
with X-Windows servers in TCP/IP workstations.

The X-Windows programming interfaces are, like the RPC programming
interfaces, a higher level programming interface to the socket interface.
But unlike the RPC programming interface, which is a general use
interface, the X-Windows interface is a specialized programming interface
that deals only with distributed presentation.

The X-Windows programming interface in IBM TCP/IP Version 3 Release 1 for
MVS is based on the X11.4 specification. The X11.4 programming interface
is extremely detailed and gives you a high number of low-level functions.
On top of the basic X11.4 programming interface, you find some toolkits
that implement generally used X-Windows functions (also called intrinsic
functions). You can use the toolkits to develop X-Windows applications
without the detailed coding you would have to use if you only had the
X11.4 interface.

At an even higher level than the X-Windows toolkits, you find what is
termed X-Windows widget sets. A widget set is a collection of procedures
or functions that you use to create commonly used X-Windows objects.
Examples of such objects are the following:

Push buttons
Scroll bars
Dialog boxes
Text boxes
Pull-down menus

The widget sets that are supplied with IBM TCP/IP for MVS are:
The Athena Widget set from Massachusetts Institute of Technology

(MIT) .

The OSF/Motif Widget set release 1.1 from the Open Software Foundation
(OSF) .

You can only develop X-Windows programs in C.
For further details about X-Windows programming please see IBM TCP/IP for

MVS: Programmer's Reference, SC31-7135, and TCP/IP for MVS, VM, 0S/2 and
DOS X Window System Guide, GG24-3911.

2.5 X/Open Transport Interface (XTI)

IBM TCP/IP for MVS implements an XTI programming interface in C that
allows you to use XTI programs in a TCP/IP environment.

XTI is defined by X/Open and is a superset of UNIX System V Transport
Layer Interface (TLI), which is a programming interface introduced in UNIX
System V.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

XTI
————————————— Programming
Interface

RFC1006 Mapper

Socket
————————————— Programming
Interface

TCP

IP

Network Interfaces

Figure 12. X/Open Transport Layer Programming Interface

The IBM TCP/IP for MVS implementation of XTI includes a mapping component
which maps between XTI calls and TCP socket calls. The mapping component
is based on RFC1006.

The XTI system calls are implemented as C function calls, so you must
develop your XTI application in C.

For details about the XTI programming interface, please study CAE
Specifications: X/Open Transport Interface (XTI) and IBM TCP/IP for MVS:
Application Programming Interface Reference, SC31-7187.

2.6 SNMP Agent Distributed Programming Interface (DPI)

This is a special purpose programming interface that you can use if you
want to implement dynamic Management Information Base (MIB) variables. 1In
an SNMP environment, the MIB variables are defined in the
tcpip.v3rl1.MIBDESC.DATA data set. If you want to dynamically add, replace
or delete MIB variables, you can develop an SNMP subagent program that
uses the DPI programming interface to interact with the SNMP agent address
space (SNMPD) to perform such functions.

If you develop an SNMP subagent, you can define your own MIB variables and
SNMP traps.

The connection between the subagent address space and the SNMP agent is
established as a TCP socket connection, so the DPI programming interface

is again a higher level programming interface to the socket interface.

It is outside the scope of this book to explain the DPI programming
interface in detail. For the socket based parts of an SNMP subagent you

A Beginner's Guide to MVS TCP/IP Socket Programming

28

A Beginner's Guide to MVS TCP/IP Socket Programming

can use the information in this book, but for the specifics of the DPI
programming interface you can find useful information in IBM TCP/IP for
MVS: Programmer's Reference, SC31-7135, where there is a good example of a
C based SNMP subagent. The DPI programming interface is only supported
for programs written in C.

2.7 Kerberos Programming Interface

Kerberos is an authentication system that you can use to identify clients
and authenticate connection requests. Authentication depends on both
client and server programs to include specific system calls to the
Kerberos Authentication Server (KAS) and Ticket Granting Server (TGS).

The Kerberos calls are implemented in C, so you can only use the Kerberos
authentication features if you develop your programs in C.

This book does not include details about the Kerberos program calls., You
can find call reference information in IBM TCP/IP for MVS: Programmer's
Reference, SC31-7135.

3.0 Chapter 3. TCP/IP Concepts for Socket Programmers

This chapter explains some very basic TCP/IP concepts which are required
in order to understand the remaining parts of this book. We will not
indulge into too much detail, but we will focus on the concepts where an
explanation may ease your understanding of the TCP/IP socket programming
issues that are presented in the succeeding chapters.

For a more thorough explanation of TCP/IP concepts, we refer you to TCP/IP
Tutorial and Technical Overview, GG24-3376.

(o8]
—

o | W W W W
1 oy O > I

TCP/IP Protocol Layers

Addresses

Sockets

Socket Types

Encapsulation

Addressing Families

General Socket Program Structure

3.1 TCP/IP Protocol Layers

The TCP/IP protocol stack consists conceptually of four layers, each layer
consisting of more protocols.

We will define a protocol as a set of rules or standards that two entities
must follow to allow each other to receive and interpret messages sent to
them. The entities could, for example, be two application programs, in
which case we talk about an application protocol. The entities could also
be two TCP protocol layers in two different IP hosts, in which case we
talk about the TCP protocol.

Process | User || User | | User || User | OS1I
Layer |Process| |Process| |Process| |Process| Layers 5-7

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

N A N A
——————— -1 -===l-=—-=-=-| -=-=-=-=-=-=- == - =
| \ | \
Transport | | OS1I
Layer | | TCP | | | UDP | Layer 4
| | | | | |
| ~ | ~
| | 1 |
——————— == == 1_ -I- [- ===-=-=-=-=-=- =
v vV V
Network - OSI
Layer | ICMP | < >| IP | |ARP| | RARP | Layer 3
| | | | | |
A A A
—————————————— [l - ==-=-=- ===
A\ v Vv
Data link OSI
layer | Hardware Interfaces | Layers 1-2

Figure 13. The TCP/IP Protocol Stack

Your programs are located at the process layer, where they may interface
either to the two transport layer protocols (TCP and UDP) or directly to
the network layer protocols ICMP and IP.

TCP Transmission Control Protocol

TCP is a connection-oriented transport protocol that provides a

reliable, full-duplex byte stream. By far the majority of TCP/IP
applications use the TCP transport protocol. It is estimated that

between 80% and 90% of all TCP/IP applications are based on TCP,
which is the reason why this book devotes most of the pages to
explaining how to create TCP based applications.

UDP User Datagram Protocol

UDP is a connectionless protocol that provides datagram services.

There are no guarantee that a UDP datagram ever reaches its

intended destination, or that it reaches its destination only once
and in the same shape as it was passed to the sending UDP layer by

a UDP application.
ICMP Internet Control Message Protocol

ICMP is used to handle error and control information at the IP
layer. ICMP is mostly used by network control applications that
are part of the TCP/IP software product itself, but ICMP may be
used by authorized user processes as well. PING and TRACEROUTE
are examples of network control applications that use the ICMP
protocol.

IP Internet Protocol

The IP layer provides the packet delivery services for TCP, UDP
and ICMP. The IP layer protocol is in itself an unreliable and
so-called best-effort protocol. There is no guarantee that IP
packets will arrive to the destination or that they will arrive
only once and error—-free. Such reliability features are built

A Beginner's Guide to MVS TCP/IP Socket Programming

30

A Beginner's Guide to MVS TCP/IP Socket Programming

into the TCP protocol, but not into the UDP protocol. If you want
a reliable transport between two UDP applications, the reliability
functions must be built into the UDP applications.

ARP Address Resolution Protocol

This protocol is used by the networking layer to map an IP address
into a hardware address. On a local area network, such an address
would be a Media Access Control (MAC) address.

RARP Reverse Address Resolution Protocol

As the name suggests, this protocol is used to do the reverse
operation of the ARP protocol: map a hardware address into an IP
address.

Please note that both ARP packets and RARP packets are not
forwarded in IP packets, but are media level packets themselves.
ARP and RARP are not used on all network types as some networks do
not need these protocols.

3.2 Addresses

One of the most basic requirements for network programming is the ability
to find your communication partner by address or name.

From the perspective of an application program, the identity of a TCP/IP
communication partner is defined in two steps:

1. The first step is the address of the machine where the partner
application is running. In an IP network, this is the IP address.

2. The second step is to identify the specific application on that
machine. This is done through the port number.

3.2.1 IP Addresses
3.2.2 Ports

3.2.1 IP Addresses

In the current version of the IP protocol (version 4), an IP address
occupies 32 bits. These 32 bits are divided into a network part and a
host part.

The split between the network part and the host part is determined by the
address class. The first bits in an IP address identify the address
class.

Class A |O|netid]| hostid |

I—I I |
7-bit netid and 24-bit hostid: 0.0.0.0 to 127.255.255.255

Class B |10]| netid | hostid |
(| | |

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

14-bit netid and 16-bit hostid: 128.0.0.0 to 191.255.255.255

Class C |110]| netid | hostid |

I | |
21-bit netid and 8-bit hostid: 192.0.0.0 to 223.255.255.255

Figure 14. IP Address Classes

In addition to the three IP address classes presented in_Fiqure 14, class
D and E also exist. Class D addresses are called multicast addresses, and
class E addresses is a group of addresses that is currently reserved for
future use.

Every IP datagram contains the full 32-bit source IP address and the full
32-bit destination IP address in the 20-byte IP header. IP routers on the
path, between the source and the destination IP host, only need to look at
the IP addresses of an IP datagram in order to determine where to forward
the IP datagram.

IP addresses in the form of numbers are hard to remember. And, as they
are related to the internal structure of your IP network, they tend to

change. A person may move to a different office and get a different IP
address; but, of course, remains the same person.

For those reasons, TCP/IP provides facilities to assign a symbolic name to
an IP address. Such a name is known as a host name.

The translation between host names and IP addresses is performed by a
component called the name resolver. This component is part of every
TCP/IP product. The name resolver finds its information in either some
local host tables or it queries a special server called a name server.

The socket programming interface includes calls you can use to translate a
host name to an IP address or an IP address to a host name. These calls
are gethostbyname and gethostbyaddr.

In a TCP/IP network, there are several other types of addresses, such as
physical (LAN) addresses. TCP/IP software handles all of these addresses,
so your application should not be concerned with those.

An IP address is by tradition expressed externally in dotted decimal form
and internally in a 32 bit wide field. 1In a C-program you can use two
library routines to convert an IP address from one format to the other:

inet_addr Converts a null-terminated character string to a full-word IP
address

inet_ntoa Converts a full-word IP address to a null-terminated character
string

In the C programming language a variable length character string is
terminated with a hexadecimal zero (X'00'). This is the reason why such a
string is called a null-terminated string.

> inet_addr
| v
9.24.104.79 X'0918684F'

A Beginner's Guide to MVS TCP/IP Socket Programming

32

A Beginner's Guide to MVS TCP/IP Socket Programming
~ |

| inet_ntoa < |

If you are writing your socket programs in languages other than C, you
have to develop similar routines. You will find, in the appendix of this
book, examples of two assembler routines that implement similar functions.
These routines can be called from any high-level language that supports an
assembler call interface. See "TPIINTOA Convert TP Address to Character
String" in topic G.2, and "TPITADDR Convert TP Address Character String to
Full-word" in topic G.3.

An IP host may have more IP addresses. Such a host is, in IP terms,
called a multihomed host. Actually an IP address does not identify an IP
host but rather an IP network interface on an IP host.

Any multihomed host may act as an IP router. MVS TCP/IP allows the system
programmer to disable IP routing for a multihomed MVS host by setting the
NOFWD option in the tcpip.v3rl.TCPIP.PROFILE configuration data set.

If your MVS TCP/IP host has two IP network interfaces, for example, a
token-ring interface and an Ethernet interface, it will have two distinct
IP addresses; one for each network interface.

You have to consider the multihomed aspects of a host when you write
socket programs. A server program can specify if it will accept client
requests from all available network interfaces, or only from a specific
network interface. A client program that sends requests to a server on a
multihomed host may use any of the supplied network interfaces of the
server host, i1f the server accepts requests on all the network interfaces.

In Figure 15, the MVS system with a host name of mymvs has two IP
addresses (one for each physical network interface).

Host name: mymvs
|[MVS host: mymvs | IP addresses: 10.0.1.1 and 10.0.2.1
| |
[10.0.1.1 10.0.2.1]
| 1

| |
| |
| |
.. | Ethernet
TR _ |
. | |
| |
| |
| |
S Y SR
[10.0.1.2 10.0.2.

|
|AIX host: myaix

2| Host name: myaix
| IP addresses: 10.0.1.2 and 10.0.2.2
|
|

Figure 15. Multihomed IP Host

When your client program issues a gethostbyname call to find an IP address

A Beginner's Guide to MVS TCP/IP Socket Programming

33

A Beginner's Guide to MVS TCP/IP Socket Programming

for a host name, the name resolver will return not one IP address, but a
list of IP addresses: one for each registered network interface for the
host in question. It is a good programming practice to take the full list
of IP addresses into consideration when you write your client program. If
a connect to the first IP address in the returned list does not respond,
your program should include code to pick up the next IP address in the
returned list and try to connect to that one. If you write your client
programs this way, you build into the code dynamic backup options for
failed network interfaces on the server host.

In the example in Figure 15, the application that runs on host myaix will
receive both IP address 10.0.1.1 and 10.0.2.1 on a gethostbyname call for
the host name mymvs. 1If, for example, the Token-ring interface on mymvs
is down, the client application on myaix will not be able to connect to
address 10.0.1.1; but it will be able to successfully connect to address
10.0.2.1, which is on the Ethernet LAN.

3.2.2 Ports

A socket program in an IP host identifies itself to the underlying TCP/IP
protocol layers by a port number.

A port is a 16-bit integer ranging from 0 to 65534. A port uniquely
identifies this application to the underlying protocol (TCP, UDP or IP) in
this TCP/IP host. Other applications in the TCP/IP network may contact
this application via reference to the port number on this specific IP
host.

|Application | |Application |
|Process no. 1] |Process no. 2]
[| | |
|Port Port|
I x y |

IP and ICMP IP address

Network hardware interface Hardware address

Figure 16. The Port Concept

Both server applications and client applications have port numbers. A
server application will use a specific port number that uniquely
identifies this server application. The port number can be reserved for
this particular server so no other process ever uses it. In an IBM TCP/IP
for MVS environment, you can do so via the PORT statement in the
tcpip.v3rl.PROFILE.TCPIP configuration data set. When the server
application initializes, it will, via the bind socket call, instruct the
underlying protocol layers what its port number is. A client application
must know the port number of a server application in order to be able to
contact it.

Normally, no one needs to have advance knowledge of the port number of a

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

client, so a client leaves it often to TCP/IP to assign a free port number
when the client issues the connect socket call to connect to a server.
Such a port number is called an ephemeral port number, which means it is a
port number with a short life. The selected port number is assigned to
the client for the duration of the connection and is then made available
for other processes to use. It is the responsibility of the TCP/IP
software to ensure that a port number is only assigned to one process at a
time.

Some application processes are themselves standardized protocols, such as
FTP, SMTP, or TELNET. Such standardized applications will use the same

port number on all TCP/IP hosts. These port numbers are called well-known
ports and they represent well-known services. Well-known official
Internet port numbers are all in the range from 0 to 255. You can find a

list of these port numbers in Assigned Numbers, RFC1700. In addition,
port numbers in the range 256 to 1023 are reserved for other well-known
services. Port numbers in the range from 1024 to 5000 are used by TCP/IP
when TCP/IP automatically assigns port numbers to client programs that do
not use a specific port number. Your server applications should use port
numbers above 5000.

Port 0 - 255 256 - 1023 1024 - 4999 5000 - 65534

Numbers | | | | |
Official Other Ephemeral Your well-known
Internet Well-known ports server ports

Services Services

Figure 17. Port Number Assignment

Before you select a port number for your server application, you should
consult the tcpip.v3rl.ETC.SERVICES data set. This data set is used to
assign port numbers to server applications. The server application can
use the getservbyname socket call to retrieve the port number assigned to
a given server name. You may add the names of your server applications to
this data set and use the getservbyname call. Using this technique, you
avoid hard coding the port number into your server program. The client
program must know the port number of the server on the server host. There
is no socket call to obtain that information from the server host. One
way to handle this could be to synchronize the contents of the
ETC.SERVICES data sets on all TCP/IP hosts in your network. Your client
application could then use the getservbyname socket call to query its
local ETC.SERVICES data set for the port number of the server. Using this
technique, you develop your own locally well-known services.

3.3 Sockets

A port represents an application process on a TCP/IP host, but the port
number itself does not indicate what protocol is being used: either TCP,
UDP or IP. The application process may use the same port number for all
three protocols. To uniquely identify the destination of an IP packet
that arrives over the network, we have to extend the port principle with
information about the protocol used and the IP address of the network
interface; this union is called a socket.

A socket is made up of 3 components:

A Beginner's Guide to MVS TCP/IP Socket Programming 35

A Beginner's Guide to MVS TCP/IP Socket Programming

{protocol, local-address, local-port}

A socket uniquely identifies the endpoint of a communication link between
two application ports.

Application	CONNECTION	Application
Process A	< >	Process B

| |Port 1028 Port 2034 |

[[

[[
TCP		TCP
Ip	9.67.38.96 9.67.38.92	Ip
Network intf.		Network intf.

Socket A = {TCP, 9.67.38.96, 1028}

Socket B = {TCP, 9.67.38.92, 2034}

Figure 18. The Socket Concept

The term association is used to completely specify the two processes that
comprise a connection:

{protocol, local-address, local-port, foreign—-address, foreign—-port}
A socket is also called a half association or a transport address.

If you have knowledge about SNA, some of these terms may seem familiar to
you. The network part of an IP address resembles the SNA network name.
The host part of the IP address resembles a System Services Control Point
(SSCP) in an SNA subarea network, while the port number resembles a
Logical Unit (LU) that is owned by that SSCP. A socket resembles a
half-session, and the association resembles an SNA session.

The terms socket and port are sometimes used as synonyms, but please note
that the terms port number and socket address are not synonymous. A port
number is one of the three parts in a socket address. A port number can
be represented by a single number; for example, 1028 and a socket address
can be represented by {tcp,myhostname,1028}.

A socket descriptor (or sometimes referred to as a socket number) is a
binary half-word (2 byte integer) that acts as an index into a table of

sockets currently allocated to a given process. A socket descriptor
represents a socket but is not the socket by itself.

3.4 Socket Types

When you write socket programs, you have to select what kind of service
you require from the transport protocol layer.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

Three different socket types are defined as follows:
Stream socket - a stream socket is characterized by:
- Connection-oriented, which means that the transport layer
representing the two sockets establish a logical connection before

they begin to exchange data.

- Full-duplex, which means data can be transmitted in both
directions simultaneous.

- Reliable, which means that error-free data delivery is guaranteed
in right order and without duplication.

- Byte stream - no boundaries are imposed on the data. The data
being transmitted can be of virtually unlimited size.

- Flow control, which guarantees that the sender does not send data

faster than the network and the receiver is able to manage.

The default protocol for such a service in a TCP/IP network is the TCP

protocol. FTP is an example of an application that uses stream

sockets.

Datagram socket - a datagram socket is characterized by:

- Connectionless, which means that datagrams are transmitted over
the network without first establishing a connection between the
two sockets. Each datagram must contain the full set of

addressing information required for its delivery.

- No reliability guaranteed, which means that data may be
duplicated, out of order, corrupted or never sent.

- No flow control, which means that a sender may monopolize the
network and send datagrams faster than the receiver can manage.

- Messages have a maximum size. If you want to send more data than

the amount you can send in a single datagram, you must send more
independent datagrams.

The default protocol for such a service in a TCP/IP network is the UDP
protocol. NFS is an example of an application that uses datagram
sockets.

Raw socket - a raw socket can be characterized by:

- Access to lower-level protocols (IP and ICMP).

- Connectionless.

- Reliability not guaranteed.

- Messages have a maximum size.

PING is an example of an application that uses raw sockets.

Normally, you would not use raw sockets unless you intend to develop
TCP/IP system software functions yourself.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

Study Iable 2 for an overview of the three socket types and a guide on
when to use which one.

Table 2. Which Socket Type to Use

Stream Datagram Raw

Reliable? Yes Only by adding reliability Only by ac
code code
Connection and reliability Good Best

Data size Best choice for large

amounts of data

Data must
packet

Can only use up to maximum
datagram size

Protocol used? TCP UDP

|

|

|

|

|

|

|

| Performance?
|

|

|

|

|

| Any IP prc
|

| |
| |
| |
| |
| |
| |
| overhead |
| |
| |
| |
| |
| |
| |

A stream socket represents a connection-oriented protocol, while a
datagram socket represents a connectionless-oriented protocol.

Figure 19 illustrates the typical socket calls that are used for a
connection-oriented protocol. Other calls exist, but those shown here are
the typical calls you will use.

Any number of send and receive calls from either side is possible. The
figure primarily illustrates connection initiation and termination
procedures.

The listen/accept sequence by definition characterizes a
connection-oriented server, whereas the client is characterized by the
connect call.

SERVER
| socket |
l_ |
v
| bind
l_ |
v
| listen |
l_ |
v CLIENT
| accept | | socket |
l_ | | |
v A\
blocks until Connection
connection < | connect |
| establishment | |
v A\
data (request to server)
| recv < | send |

A Beginner's Guide to MVS TCP/IP Socket Programming 38

A Beginner's Guide to MVS TCP/IP Socket Programming

\
process request

|
\Y

data (reply from server)

| send |

| close |

|

|

|
\%

> | recv |

Figure 19. Socket Calls for a Connection Oriented Protocol

Figure 20 illustrates the typical socket calls for a connectionless
protocol. Other calls exist, but those shown are the typical calls you

will use.

The important thing to note here is that there is no connection

establishment.

Both the connectionless server and client will use a bind call. The
client does it in order to ensure it has a unique address, so the server

may be able to send a response back to it.
a valid return address on an envelope.

You can compare it to placing

Normally a connectionless application will not use a connect call, but it
may do so. In that case, no connection is established, but the connect
call just stores the peer address of the partner application. Anything

sent on the socket goes to that address,

and only data from that peer

address 1s returned to the application that issued the connect call.

SERVER

| socket |

v

| bind
[

4

|recvfrom |

v
blocks until data
data receive<

(request to server)

|
\Y

data (reply from server)

| sendto |

4

| close |

A Beginner's Guide to MVS TCP/IP Socket Programming

CLIENT

| socket |

Y

| bind |
|

Y

| sendto |

Y

|recvfrom |

Y

blocks until
> data received

|
\Y

| close |

39

A Beginner's Guide to MVS TCP/IP Socket Programming

Figure 20. Socket Calls for a Connectionless-Oriented Protocol

3.5 Encapsulation

When your program, which is located at the process layer in the TCP/IP
protocol stack, passes data to the underlying protocol layers, each
protocol layer will add some extra bytes in front of your data and, for
certain protocols, also extra bytes following your data. This process is
called encapsulation and is the source of most of the confusion about
datagram sizes, IP packet sizes and MTU (Maximum Transmission Unit) sizes.

See Figure 21 for an overview of the encapsulation process.

| data |
| |
| |
16-bit TCP source port _
l6-bit TCP destination port Y
| TCP | data | TCP
|header | | Segment
| | |
20
TCP protocol
32-bit IP source .
32-bit IP destination v
| TP | TCP | data | IP
|header |header | | Datagram
| | | |
20 20
IP Frame type
48-bit source MAC o
48-bit destination MAC |
A\
| Tokenring| IP | TCP | data | Tokenring] Tokenring
|header |header |header | |trailer | Frame
| | | | | |
23 20 20 4

Figure 21. TCP/IP Encapsulation

The MTU size dictates the maximum size of an IP datagram that can be
transmitted over a given interface, given the physical characteristics of
that interface.

See Table 3 for an overview of typical MTU sizes.

| Network Interface | MTU size |
| | in bytes |

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

16 Mbps Token-Ring	17914
4 Mbps Token—-Ring	4464
FDDI	4352
Ethernet	1492
IEEE 802.3	1500
X.25	576
Serial	296

| point-to-point | |
| | |
Table 3. Network Interface and Typical MTU Values

If the size of an IP datagram exceeds the MTU value of your network
interface, the IP layer will fragment the IP datagram and transmit the TCP
segment as a number of IP datagram fragments.

From a performance point of view, it is normally advisable to prevent
fragmentation. The TCP protocol works with a unit that is called a TCP
segment. When a TCP segment is passed to the IP layer, a 20-byte IP
header is added to the TCP segment to form an IP datagram. The size of a
TCP segment is determined by the two TCP protocol layers that are involved
in setting up a TCP connection.

Your application program cannot influence the decision made by TCP in
determining the segment size. Your application passes a stream of bytes
to the TCP layer. It is up to the TCP layer to chop your data up into TCP
segments and send these segments over the IP network. The receiving TCP
layer assembles the TCP segments into the right order and passes them to
your application as a stream of bytes without any apparent boundaries.

If you use UDP protocols instead of TCP, your data is placed into a UDP
datagram preceded with an 8 byte UDP header. If you pass 8192 bytes of
data to the UDP layer, a UDP datagram of 8200 bytes is handed over to the
IP layer. Sending that size UDP datagrams will almost always result in IP
datagram fragmentation. Many UDP applications restrict themselves to
sending UDP datagrams that do not exceed 512 bytes in order to reduce the
risk of fragmentation.

3.6 Addressing Families

Until now we have more or less let you believe that socket programming
only was used with TCP/IP transport protocols; but that is not the full
truth.

The socket programming interface is not limited to TCP/IP. Sockets can
also be used for interprocess communication within a computer without any
network involvement or between computers using network protocols other
than TCP/IP. Generally speaking, sockets can be used for interprocess
communication using a whole range of protocol suites.

A socket is the endpoint of a communication path; it identifies the
address of a specific process at a specific computer using a specific
transport protocol. The exact syntax of a socket address depends on the
protocol being used; on its addressing family. When you obtain a socket

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

via the socket system call, you pass a parameter that tells the socket
library to which addressing family the socket should belong. All socket
addresses within one addressing family use the same syntax to identify
sockets; in other words, they belong to the same family.

In an MVS environment, you are able to use the following addressing

families:

Family Description

AF_INET Addressing family Internet - also referred to as the Internet
domain.

This addressing family is used within the TCP/IP domain to

identify sockets on IP hosts. A socket address in AF_INET

consists of the following:

Family Half-word binary with a value of 2, which
identifies the socket address as belonging to
the AF_INET addressing family.

Port Half-word binary with port number (see "Ports"
in topic 3.2.2) that identifies the process.

IP address Full-word binary with IP address of IP host in
network byte order format.

Reserved 8 reserved bytes.

The following is an example of an AF_INET address that

represents the telnet server (port number 23) on an IP host

with the IP address of 9.24.104.74:
AF_INET 23 9.24.104.74
AF_IUCV Addressing family IUCV (Inter User Communication Vehicle).

This addressing family is unique to IBM TCP/IP for MVS and is

only used within MVS. It can be used in C programs to
implement a form of interprocess communication between
processes in the same MVS system, or what is also termed as

local sockets. You can use AF_INET for the same purpose, but

AF_TIUCV has some performance advantages over AF_INET, as
AF_TIUCV communication takes place directly between two MVS

address spaces without involving the TCP/IP address space. In
a UNIX or in an OpenEdition/MVS environment, you would use the
AF_UNIX addressing family for the same purpose. The syntax of

an AF_TIUCV address is as the following:

Family Half-word binary with a value of 17, which
identifies the socket address as belonging to
the AF_TIUCV addressing family.

Port Half-word binary. Reserved for future use.
Must be set to zero.

Address Full-word binary. Reserved for future use.
Must be set to zero.

Node ID 8 characters. Reserved for future use. Must be

set to space.

A Beginner's Guide to MVS TCP/IP Socket Programming

42

A Beginner's Guide to MVS TCP/IP Socket Programming

User ID 8 characters set to the address space name of
the application that binds the socket to a
specific process.

Name 8 characters set to a name by which the process
wants to be known to other processes within the
AF_TIUCV addressing family.

The following is an example of an IUCV address of a program
called TESTPGM in the TESTAS MVS address space:

AF_IUCV 0 0 <space> TESTAS TESTPGM

AF_UNIX Addressing family UNIX - also referred to as the UNIX domain.

This addressing family is not, as the name might suggest,
restricted to UNIX environments. It Jjust has its roots in the
UNIX environment where it can be used for socket based
interprocess communication between processes within one UNIX
operating system. IBM TCP/IP for MVS does not support AF_UNIX
sockets. You can use AF_UNIX with OpenEdition/MVS sockets,
where this addressing family is used for interprocess
communication between OpenEdition/MVS processes within one MVS
operating system. The syntax of an AF_UNIX address is as the

following:

Family Half-word binary with a value of 1, which
identifies the socket address as belonging to
the AF_UNIX addressing family

Path 108 characters holding a pathname (similar to a

hierarchical file system path name) by which
this local process wants to be known by other
local processes.

The following is an example of an address in the AF_UNIX
addressing family:

AF_UNIX /u/xyz/testsrv

Other addressing families exist, and new families may be added in the
future; but these three are the families you will meet in an MVS
environment today. The two most important are the AF_INET and the AF_UNIX
addressing families.

See Table 4 for an overview of which addressing families are supported by
which socket library in MVS.

In the coming chapters, we will restrict our discussion to mostly TCP/IP
sockets, which are sockets that belong to the AF_INET addressing family.

Table 4. Addressing Families and Programming Interfaces

|
|
| | Network sockets | Local
| | |
| Socket Library Support | AF_INET | AF_UNIX
| | |
| Open/MVS with integrated socket support (1) | X | X
| | |
A Beginner's Guide to MVS TCP/IP Socket Programming 43

SC

A Beginner's Guide to MVS TCP/IP Socket Programming

C with IBM TCP/IP for MVS socket support (2) | X |
IBM TCP/IP for MVS Sockets Extended assembler macro : X :
IBM TCP/IP for MVS Sockets Extended call interface : X :
IBM TCP/IP for MVS REXX socket support (3) : X :
IBM TCP/IP for MVS assembler IUCV macro interface : X :
IBM TCP/IP for MVS Pascal socket interface : X :
C with AnyNet/MVS socket support (5) : X :

| |

1. Integrated socket support requires AD/Cycle C/370 VI1R2, AD/Cycle LE/370 V1R3 and OpenEdition/MV¢

5.1.

2. The socket support in terms of C header files and runtime support is provided with IBM TCP/IP f«

3. The REXX socket support as it is provided with IBM TCP/IP for MVS.

4. 1If you have a profound knowledge of the IUCV assembler macro interface,

communication is supported with the IUCV macro interface.

the AF_IUCV form of inte

5. Currently AnyNet/MVS sockets cannot be used concurrently from a program that also uses IBM TCP/:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Note:
|
|
|
|
|
|
|
|
|
|
|
|
|
| for MVS socket library.
|

sockets, because the program is statically linked with either the AnyNet/MVS socket library or t

3.6.1 Integrated Sockets

3.6.1 Integrated Sockets

Integrated sockets is a concept introduced with OpenEdition/MVS in MVS/ESA
SP 5.1, and it deserves some explanation in this context.

An OpenEdition/MVS application uses the same system calls, for example, to
read and write data to and from local sockets and to and from files in the
OpenEdition/MVS hierarchical file system. In an OpenEdition/MVS
application a descriptor that is used in, for example, a read system call
may either be a socket descriptor or a file descriptor. Descriptor four
is, for example, a socket descriptor representing an AF_UNIX socket, and
descriptor five might be a file descriptor used to read data from a file
in the hierarchical file system. On, for example, a read system call an
OpenEdition/MVS application will pass a descriptor. If the descriptor
represents a socket, data will be read from the socket. If it represents
a file, data will be read from the file.

In the MVS/ESA 4.3 OpenEdition/MVS implementation, descriptors had to be
managed by different environments. The OpenEdition/MVS environment for
file descriptors and local socket descriptors and the TCP/IP or AnyNet/MVS
environment for network socket descriptors. This gave problems in the
assignment and management of descriptor numbers across the involved
environments and made it practically impossible to use both
OpenEdition/MVS services and TCP/IP services from the same application
program.

In the MVS/ESA SP 5.1 OpenEdition/MVS implementation, integrated socket
support was introduced. This support creates an OpenEdition/MVS socket

A Beginner's Guide to MVS TCP/IP Socket Programming

44

A Beginner's Guide to MVS TCP/IP Socket Programming

environment that supports both file descriptors, local sockets, and
network sockets concurrently in the same OpenEdition/MVS program.

OpenEdition/MVS Applications

OpenEdition/MVS Integrated Sockets

OpenEdition/MVS Logical Filesystem

|Hierarchical File
| System (HFS) Phy-

|Addressing Family
|AF_INET Physical

|Addressing Family
|AF_UNIX Physical

|[Filesystem |[Filesystem |cal Filesystem
| | |
| OpenEdition/MVS |
______ |_____________________l_______
\ \
TCP/IP		
		DFSMS/MVS
Address Space		
\ \
TCP/IP Network HFS files

Figure 22. Integrated Sockets in OpenEdition/MVS

OpenEdition/MVS integrated sockets handles the following:

Descriptor assignment and management

Socket inheritance when an OpenEdition/MVS application uses the fork
system call

Select processing with a mix of socket, pipes and file descriptors

IBM TCP/IP for MVS handles the following:
Management of TCP/IP protocols and the physical network connectivity
Name translation by means of the Domain Name System
TCP/IP applications like FTP, TELNET, etc.

In an OpenEdition/MVS system, you have a number of C-socket libraries you

can choose among. See Figure 23 for an overview of some of your options
in an MVS/ESA SP 5.1 OpenEdition/MVS system.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

| Sockets Extended]| | C—-Socket |

|Application | | Application |
- | |
|
A\

Decision via Compile and Linkage 1
Editing Library Selection
|

|

|

|

|

|

| |

\Y \Y \Y \Y

Sockets		TCP/IP		OpenEdition/MVS		AnyNet /MVS
Extended		C—socket		Socket Library		C—socket
Library		Library				Library
[v			
OpenEdition/MVS						
LFS						

| |
|AF_INET |AF_UNIX |
|PFS |PFS |
[|

| |
| |
| |
| |
| |
| |
| |
| v |
| Decision via OpenEdition/MVS 2 |
| Start-up Options |
| | |
| |
\ \

v A\ A\
TCP/IP		VIAM AnyNet/MVS
System Address		Address Space
Space		
	~	
~ |
A\ \Y4
IP Network SNA Network

Figure 23. Socket Libraries in an OpenEdition/MVS Environment

1 The choice between TCP/IP C-sockets, OpenEdition/MVS sockets or
AnyNet /MVS sockets is made when you compile and link edit your C-socket
program. This is a static choice. If you want to use the same source
program with both AnyNet/MVS and TCP/IP, you must compile and link it into
two separate load modules.

2 If you choose OpenEdition/MVS sockets for your compile and link job,
you are able to use the same program with both TCP/IP and AnyNet/MVS as
AF_INET provider, but not concurrently. The choice here is made when the
OpenEdition/MVS kernel address space is started. In the OpenEdition/MVS
start-up parameters, you specify if the AF_INET provider is TCP/IP or
AnyNet/MVS, and that is in effect for all AF_INET communication from all
OpenEdition/MVS socket programs until you restart the OpenEdition/MVS
kernel address space. This description applies to OpenEdition/MVS as it
is implemented in MVS/ESA SP 5.1. The support for AnyNet/MVS as
OpenEdition/MVS AF_INET transport provider was added with PTF UW17057.

A Beginner's Guide to MVS TCP/IP Socket Programming 46

A Beginner's Guide to MVS TCP/IP Socket Programming

In the MVS/ESA SP 5.2.2 OpenEdition/MVS environment you will be able to
use converged sockets. Converged sockets enable an OpenEdition/MVS socket
program to use both TCP/IP and AnyNet/MVS concurrently as AF_INET
transport provider. This support will, for example, enable an
OpenEdition/MVS socket program to listen for TCP connections from both
TCP/IP and AnyNet/MVS concurrently and to use a select call with a mix of
file descriptors, local socket descriptors, TCP/IP network socket
descriptors and AnyNet/MVS network socket descriptors.

3.7 General Socket Program Structure

The terms client and server are very common words within the TCP/IP
community. More definitions of these terms exist. Often specific
machines in a network are called servers. In this context, we talk about
roles of communicating programs and more specifically about the
distribution aspects of a cooperative application as discussed in

Chapter 1, "Cooperative Applications" in topic 1.0.

In a TCP/IP context, the terms are defined as follows:

Server A process that identifies itself to the network providing one or
more specific services to clients. A server process responds to
client requests.

Client A process that initiates a request for some service from a
server.

The client/server distribution model indicates a master/slave role; the
client is the master requesting some service from the server (acting as
the slave) that obediently responds to the requests from the client.

The model also implies a one-to-many relationship; a server typically
serves multiple clients while a client deals with a single server.

No matter which of the socket programming interfaces you select, the
functions you use will be the same. The syntax may vary, but the
underlying concept is the same.

While clients communicate with one server at a time, servers may serve
multiple clients. Consequently, when you design a server program, you may
feel a need for multiple concurrent processes. Special socket calls are
available for that purpose of concurrent servers, as opposed to the more
simple type of iterative servers.

Iterative Server
Concurrent Server
. 7.3 Socket Program Categories

3.7.1
3.7.2

(o8]

3.7.1 Iterative Server

An iterative server processes requests from clients in a serial manner;
one connection is served and responded to before the server accepts a new
client connection.

Iterative Server
Client process

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

| |
	1	Do Forever
Connect to server	>	Accept a connection request
Send data		__ >Receive client data 2
		Process data
Receive reply<		Send reply to client 3
Close connection	< >	Close connection
	4	end [

| |

Figure 24. Iterative Server Main Logic
The iterative server waits for connection requests from the IP network.

1 When a connection request arrives, it accepts the connection, and 2
receives the client data.

The iterative server processes the received data and does whatever has to
be done before it builds a reply, which is sent back to the client 3

4 The iterative server closes the socket and waits again for the next
connection request from the network.

An iterative server may be implemented in more ways in MVS as follows:
As a batch job or MVS started task that is started manually or by
automation software. The job will stay active until it is closed down

by some operator intervention.

As a TSO transaction. You may start your iterative server as a TSO

transaction. For a production implementation, we recommend you do so
by submitting a job that executes a batch Terminal Monitor Program
(TMP) .

As a long-running CICS task. The task will normally be started during
CICS start-up, but it may also be started by an authorized CICS
operator that types in the appropriate CICS transaction code.

As a Batch Message Program (BMP) in IMS.

From a socket programming perspective there is no difference between an
iterative server that runs in a native MVS environment (batch job, started
task or TSO) and one that runs as a CICS task or BMP under IMS.

A general concern for iterative servers is how to terminate the server
process. For iterative servers, that execute in traditional MVS address
spaces (batch job, started task, TSO, IMS BMP), you may implement
functions in the server that enables an operator to use the MVS modify
command to signal the iterative server to stop: F SERVER,STOP. This
technique cannot be used for CICS tasks. Another solution to this problem
is to include a shutdown message in the application protocol. By doing
so, you can develop a shutdown client program that connects to the server
and sends a shutdown message. When the server receives such a shutdown
message from a socket client, it terminates itself.

3.7.2 Concurrent Server

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

A concurrent server accepts a client connection, delegates the connection
to a child process of some kind, and immediately signals its willingness
to receive the next client connection.

Concurrent server

Main Process

|
1 | Do forever
Client process > | Accept a connection request
| | 2 Schedule child process
| (. | Give connection to child process
| Connect to server (| 4 || end
| Send data | |
| | 5 | I
| Receive reply < | | | Child Processes
| Close connection | <_ 113
| | | | | |__>|]Take connection |
| | | | |_|__ >|Receive client data | |_
[|Process data |
6 | | |Send reply to client]
| .

>|Close connection |
I _ |

I _

|

Figure 25. Concurrent Server Main Logic

1 When a connection request arrives in the main process of a concurrent
server, it will schedule a child process and forward the connection 2 to
the child process.

3 The child process takes the connection, which is given to it by the
main process.

4 The child process receives the client request, processes it and sends
back a reply 5 to the client.

6 The connection is closed, and the child process either terminates or
signals to the main process that it is available for a new connection.

You may implement a concurrent server in the following MVS environments:

Implement it in the native MVS environment (batch job, started task or
TSO). In this environment you implement concurrency by using the
traditional MVS subtasking facilities. These facilities are available
from assembler language programs or from high-level languages that
support multi-tasking or multi-threading, such as C/370.

Implement it in a CICS environment, where the concurrent main process
is started as a long-running CICS task that accepts connection
requests from clients and initiates child processes via the EXEC CICS
START command. CICS sockets includes a generic concurrent server main
program called the CICS LISTENER.

A Beginner's Guide to MVS TCP/IP Socket Programming

49

A Beginner's Guide to MVS TCP/IP Socket Programming

Implement it in an IMS environment, where the concurrent main process
is started as a BMP that accepts connection requests from clients and
initiates child processes via the IMS message switch facilities. The
child processes execute as IMS Message Processing Programs (MPP). IMS
sockets include a generic concurrent server main program called the
IMS LISTENER.

In both the iterative server and the concurrent server scenarios above,
the client and server process could have exchanged a series of
request/reply sequences before they decided to close down the connection.
For the sake of simplicity, only a single interaction is shown in these
diagrams.

3.7.3 Socket Program Categories

To distinguish between these generic program types, we will use the
following terminology in the rest of this book:

Client programs for a socket program that acts as a client.

Iterative server programs for a socket program that acts as a server
and that processes one client request fully before accepting a new
client request.

Concurrent server main programs for that part of a concurrent server
that manages child processes, accepts client connections and schedules
client connections to child processes.

Concurrent server child programs for that part of a concurrent server

that processes the client requests.

The term process is used for an instance of a program. In a concurrent
server, the child program may be active in many parallel child processes,
each processing a client request.

In an MVS environment, a process 1is either an MVS task, a CICS
transaction, or an IMS transaction.

4.0 Chapter 4. The IBM TCP/IP for MVS Socket APIs

This chapter introduces each of the IBM TCP/IP for MVS socket APIs and
gives specific usage guidelines for each API.

s
—

API Relationship

IBM TCP/IP for MVS C-Sockets

Sockets Extended Call Interface

Sockets Extended Assembler Macro Interface

REXX Sockets

Pascal API

Inter-User Communication Vehicle (IUCV) Sockets

(SN (TR AN AN Y
[N (G21 1= GV |\S)

s
[~

4.1 API Relationship

Figure 26 shows how the different socket APIs are related to each other
and to the TCP/IP protocol layers.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

I |
MVS TCP/IP V3Rl Socket Application Programs || OE/MVS |
	AF-INET				
	Socket				
			Appli-		
	IMS and CICS			cation	
	socket enable				Programs
	software				
I I I					
ITCP/IP MVS		Sockets Extended,		REXX	
	C-sockets		Call and ASM-macro]		sockets
I I I [Integrated			
	C-sockets				
Inter User Communication Vehicle (IUCV) VMCF

IP and ICMP Network Protocol Layers in TCP/IP

Figure 26. Socket API Relationship to TCP/IP Protocol Layers

See Table 5 for an overview of the socket functions that are available in

the most commonly used TCP/IP socket programming interfaces.

Table 5. Functional Comparison of the TCP/IP Socket APIs

A Beginner's Guide to MVS TCP/IP Socket Programming

51

|

|

| C—sockets (1) | Sockets Extended(2) | CICS C-sockets | CICS EZACICAL | REX3
| | | | sockets (3) |

| | | | |

| accept | ACCEPT | accept | ACCEPT | acce
| | | | |

| bind | BIND | bind | BIND | binc
| | | | |

| close | CLOSE | close | CLOSE | clos
| | | | |

| connect | CONNECT | connect | CONNECT | conr
| | | | |

| endhostent | | | |

| | | | |

| endnetent | | | |

| | | | |

| endprotoent | | | |

A Beginner's Guide to MVS TCP/IP Socket Programming

inet_addr

inet_lnaof

inet_makeaddr

endservent			
fentl	FCNTL	fcentl	FCNTL
getclientid	GETCLIENTID	getclientid	GETCLIENTID
getdtablesize			
gethostbyaddress	GETHOSTBYADDR		
gethostbyname	GETHOSTBYNAME		
gethostent			
gethostid	GETHOSTID	gethostid	GETHOSTID
gethostname	GETHOSTNAME	gethostname	GETHOSTNAME
getibmsockopt			
getnetbyaddr			
getnetbyname			
getnetent			
getpeername	GETPEERNAME	getpeername	GETPEERNAME
getprotobyname			
getprotobynumber			
getprotoent			
getservbyname			
getservbyport			
getservent			
getsockname	GETSOCKNAME	getsockname	GETSOCKNAME
getsockopt	GETSOCKOPT	getsockopt	GETSOCKOPT
givesocket	GIVESOCKET	givesocket	GIVESOCKET
htonl			
htons			
ibmflush			

inet_netof

A Beginner's Guide to MVS TCP/IP Socket Programming 52

A Beginner's Guide to MVS TCP/IP Socket Programming

inet_network

inet_ntoa

A Beginner's Guide to MVS TCP/IP Socket Programming

53

	INITAPI	initapi	INITAPI
ioctl	IOCTL	ioctl	IOCTL
listen	LISTEN	listen	LISTEN
maxdesc			
ntohl			
ntohs			
read	READ		READ
readv			
recv	RECV	recv	
recvfrom	RECVFROM	recvfrom	RECVFROM
recvmsg			
select	SELECT	select	SELECT
selectex			
send	SEND	send	SEND
sendmsg			
sendto	SENDTO	sendto	SENDTO
sethostent			
setibmsockopt			
setnetent			
setprotoent			
setservent			
setsockopt	SETSOCKOPT	setsockopt	SETSOCKOPT
shutdown	SHUTDOWN	shutdown	SHUTDOWN
sock_debug			
sock_debug_bulk_perf0			
sock_do_bulkmode			
sock_do_teststor			
socket	SOCKET	socket	SOCKET

A Beginner's Guide to MVS TCP/IP Socket Programming

environments including CICS and IMS, while assembler macro interface
(Batch, TSO or started task).

3. The C-socket function that can be used in the CICS environment.

can be used in normal MVS :

| | | | |

| | | | | socl
| | | | |

| | | | | socl
| | | | |

| | | | | socl
| | | | |

| takesocket | TAKESOCKET | takesocket | TAKESOCKET | take
| | | | |

| tcperror | | | |

| | | | |

| | TERMAPI | | | terr
| | | | |

| | | | | ver:
| | | | |

| write | WRITE | write | WRITE | writ
| | | | |

| writev | | | |

| | | | |

| Notes:

|

| 1. C-sockets as they can be used in the native MVS environment and in the IMS environment.

|

| 2. Sockets Extended including call interface and assembler macro interface. Call interface may be
|

|

|

|

|

4.2 IBM TCP/TP for MVS C-Sockets

The Berkeley socket programming interface is a C-based interface. To use
it, you must develop your programs in the C programming language.

The interface is, to a large extent, compatible with the C socket
interfaces available on many other system platforms. Like on most system
platforms, you should observe some precautions if you port C-socket
applications to MVS:

You must include an additional header file (tcperrno.h) if you want to
reference all possible networking errors.

You should use the tcperror routine to print networking error
messages. On other platforms, you would use the perror call instead
of the tcperror call.

You must include the manifest.h header file, which is used to remap
the socket function long names to 8-character names supported by MVS.

The functions ioctl, getsockopt, setsockopt and fnctl do not support
all the BSD specified options.

The additional addressing family AF_TIUCV is supported in C sockets.
AF_TIUCV allows MVS address spaces on the same host to communicate with
each other using IUCV.

IBM TCP/IP for MVS C sockets use a number of socket calls that are
specific to the IBM TCP/IP for MVS environment, for example,
givesocket, takesocket and setibmsockopt.

A Beginner's Guide to MVS TCP/IP Socket Programming

54

A Beginner's Guide to MVS TCP/IP Socket Programming

For details please refer to IBM TCP/IP for MVS: Programmer's Reference,
SC31-7135.

You are able to use the C/370 multitasking facilities to create C based
multitasking concurrent server applications.

We created and tested small C socket applications using the IBM C/370
Compiler Version 2 Release 1 (5688-187).

IBM TCP/IP for MVS C socket programs may be developed for both the CICS
and IMS environment. Please note that not all C-socket functions are
available in the CICS C-socket implementation.

The C header files are distributed in the tcpip.v3rl.SEZACMAC library,
which you must concatenate to your C compiler SYSLIB DD statement. The
runtime library routines are distributed in the tcpip.v3rl.SEZACMTX
library, which you must concatenate to your MVS Binder SYSLIB DD
statement.

See "C/370 Compile JCI Procedure" in topic T.3 for a sample C compile
procedure and_"Link/FEdit JCL Procedure" in topic I.4 for a sample MVS
binder procedure.

4.3 Sockets Extended Call Interface

The Sockets Extended call interface supports all the basic socket
functions, but it does not support all the extra data conversion or IP
address manipulation functions you find in the C-sockets implementation.

Some of the extra functions are implemented in a set of EZACICxx routines;
they are as follows:

EZACICO04 Translate a character string from EBCDIC to ASCII.
EZACICO5 Translate a character string from ASCII to EBCDIC.
EZACICO6 Translate between a character array and a bit string. You can

use this routine, for example, in a COBOL program to
manipulate bit strings in a select mask.

EZACICO08 Parse the contents of a host entry structure returned by a
gethostbyname or gethostbyaddr call.

All the Sockets Extended calls use a return code parameter (RETCODE) to
pass back a return code from the function you called. Most of the calls,
in addition to the return code parameter, also use an error number
parameter (ERRNO), which is used to pass back the specific error code that
applies to the error situation that was the result of the call. 1If the
return code parameter has been set to a negative value, the error number
parameter holds the specific error code, which corresponds to the value
returned to a C program on a tcperror function call.

It is good programming practice to include logic after each call, which
tests the return code and, in case it is negative, formats an error
message based on the value passed back in the error number parameter.
During initial development and testing of a socket program, such a
practice will prove to be very valuable.

A Beginner's Guide to MVS TCP/IP Socket Programming 55

A Beginner's Guide to MVS TCP/IP Socket Programming

When you call the Sockets Extended interface, you always pass a string of
16 characters as the first parameter holding the function code you want to
use. We recommend you define these function code strings once and put
them into a copy structure or include member.

* *
* Socket interface function codes *
* *

01 soket-functions.

02 soket-accept pic x(16) value 'ACCEPT .
02 soket-bind pic x(16) value 'BIND ',
02 soket-close pic x(16) value 'CLOSE '
02 soket-connect pic x(16) value 'CONNECT ',
02 soket-fentl pic x(16) value 'FCNTL ',
02 soket-—getclientid pic x(16) value 'GETCLIENTID .

02 soket—gethostbyaddr pic x(16) value 'GETHOSTBYADDR .
02 soket—gethostbyname pic x(16) value 'GETHOSTBYNAME .

02 soket—gethostid pic x(16) value 'GETHOSTID '
02 soket—gethostname pic x(16) value 'GETHOSTNAME .
02 soket-—getpeername pic x(16) value 'GETPEERNAME .
02 soket-—getsockname pic x(16) value 'GETSOCKNAME '
02 soket—getsockopt pic x(16) value 'GETSOCKOPT '
02 soket—givesocket pic x(16) value 'GIVESOCKET '
02 soket-initapi pic x(16) value 'INITAPI .
02 soket-ioctl pic x(16) value 'IOCTL '
02 soket-listen pic x(16) value 'LISTEN ',
02 soket-read pic x(16) value 'READ '
02 soket-recv pic x(16) value 'RECV '
02 soket-recvfrom pic x(16) value 'RECVFROM ',
02 soket-select pic x(16) value 'SELECT '
02 soket-send pic x(16) value 'SEND '
02 soket-sendto pic x(16) wvalue 'SENDTO '
02 soket-setsockopt pic x(16) value 'SETSOCKOPT '
02 soket-shutdown pic x(16) value 'SHUTDOWN '
02 soket-socket pic x(16) value 'SOCKET '
02 soket-takesocket pic x(16) value 'TAKESOCKET '
02 soket-termapi pic x(16) value 'TERMAPI '
02 soket-write pic x(16) value 'WRITE ',

The function code must be in uppercase.

The Sockets Extended call interface does not support MVS multitasking,
which means you can not use it to develop concurrent servers that are
implemented in a single MVS address space. Concurrent server
implementations based on the IMS or the CICS listener, where your Sockets
Extended call-based program is the child process, started either in an IMS
Message Processing Region (MPR) or as a started transaction in CICS, is
fully supported.

When you bind your program with the MVS binder, you must concatenate the
tcpip.v3rl.SEZATCP library to your SYSLIB DD statement.

//SYSLIB DD DSN=.....
// DD DSN=TCPIP.V3R1l.SEZATCP,DISP=SHR
// DD DSN=.....

See "COBOL Compile JCI Procedure" in topic T.2 for a sample COBOL compile
procedure and_"Link/FEdit JCL Procedure" in topic I.4 for a sample MVS
binder procedure.

4.3.1 PL/I Programs

A Beginner's Guide to MVS TCP/IP Socket Programming

56

A Beginner's Guide to MVS TCP/IP Socket Programming

4.3.2 User Abend 4093

4.3.1 PL/I Programs

If you use the IBM PL/I Optimizing Compiler Version 2 (5668-910), you have
to declare the Sockets Extended interface routine with:

DCL EZASOKET ENTRY OPTIONS (RETCODE,ASM, INTER) EXT;
This causes the compiler to print the following warning message:

IELO983I EXTERNAL NAME 'EZASOKET' EXCEEDS 7 CHARACTERS.
EXECUTION IS UNDEFINED IF 'EZASOKET' IS THE SAME AS A COMPILER GENERATED
NAME .

We did not experience any difficulties by ignoring this message.
When you use the new AD/CYCLE PLI compiler (5688-235) you may code:
DCL MYSOKET ENTRY OPTIONS (RETCODE, ASM, INTER) EXT ('EZASOKET') ;

which also requires all other references to EZASOKET in the program to be
replaced by references to MYSOKET. 1In this case you do not get a warning
message. Effectively, however, the situation is not fundamentally
different from the situation with PL/I Version 2.

If one is really in doubt, the interface routine may be re-link-edited
under a different name:

//jobname JOB
//LKED EXEC LKED
//SYSLMOD DD DISP=SHR,DSN=load module library - for PL/I link-edit
//TCPLIB DD DISP=SHR,DSN=hlq.SEZATCP
//SYSIN DD *

CHANGE EZASOKET (MYSOKET)

INCLUDE TCPLIB (EZASOKET)

ENTRY MYSOKET

NAME MYSOKET (R)

4.3.2 User Abend 4093

When you test Sockets Extended programs, you may encounter user abend code
4093.

This does not indicate a system problem, but it signals a syntax error in

the parameters passed to the EZASOKET call, such as a wrong number of
parameters or an invalid function code.

4.4 Sockets Extended Assembler Macro Interface

The socket functions available in the Sockets Extended macro-based
interface are similar to those you find in the call-based interface.

You do have some extra facilities in the macro-based interface, which are
mainly the following:

1. Support for multitasking environments

A Beginner's Guide to MVS TCP/IP Socket Programming 57

A Beginner's Guide to MVS TCP/IP Socket Programming

2. Support for asynchronous socket calls
3. Support for API type three (APITYPE-3) programs

From your macro-based assembler socket programs you can use the same
EZACICxx routines as we mentioned earlier (see "Sockets Extended Call
Interface" in topic 4.3), or you can implement similar functions in your
assembler language environment.

Main task module __ > Subtaskl

|EZAGLOB EZASMI TYPE=GLOBAL,
| STORAGE=DSECT
| SUBPROG1 CSECT

ATTACH EP=SUBPROGI,
PARAM= (, , EZAGLOB, ,)

L R2, ? (R1)
USING EZAGLOB, R2

ATTACH EP=SUBPROG2,
PARAM= (, , EZAGLOB, ,)

EZAGLOB EZASMI TYPE=GLOBAL,
STORAGE=CSECT

EZAMTASK EZASMI TYPE=TASK,
STORAGE=CSECT

EZATASK1 EZASMI TYPE=TASK,
STORAGE=CSECT

> Subtask 2

|EZAGLOB EZASMI TYPE=GLOBAL,
| STORAGE=DSECT
| SUBPROG2 CSECT

L R2, ? (R1)

USING EZAGLOB, R2

EZATASK2 EZASMI TYPE=TASK,
STORAGE=CSECT

Figure 27. Sockets Extended Macro Interface Storage Areas

When you use the Sockets Extended macro interface you must provide the

following couple of storage areas that are used by the socket macros:

1. A global storage area
This storage area must exist once for an address space. The storage
area can be allocated by the single task of your single-tasking
application or the main task of your multitasking application.
The storage area must be accessible from all program modules that
issue socket macro calls inside your address space. The module that
allocates this storage area must pass a pointer to the area to all

modules inside the address space that uses socket calls.

2. A task storage area

A Beginner's Guide to MVS TCP/IP Socket Programming

58

A Beginner's Guide to MVS TCP/IP Socket Programming

If you develop a single-tasking socket application, you allocate one
task storage area.

If you develop a multitasking socket application, you must allocate
one task storage area per task.

The task storage area must be accessible from all program modules that
issue socket calls in a task.

In the example illustrated in Figure 27, you will find the following four
Sockets Extended storage areas:

1. The global storage area (EZAGLOB), which is allocated in the main
task. A pointer to the global storage area is passed to each subtask
in the PARAM keyword on the ATTACH macro call. Each of the subtasks
establishes a DSECT for the global work area and sets up a base
register for it.

2. The task storage area for the main task (EZAMTASK), which is only
accessible to the main task.

3. The task storage area for subtask 1 (EZATASK1l), which is only
accessible to subtask 1.

4. The task storage area for subtask 2 (EZATASK2), which is only
accessible to subtask 2.

If you use the asynchronous option on the socket macro calls by means of
the ECB= keyword, you must remember to issue a socket sync macro call
after the ECB associated with the asynchronous call has been posted.
Returned information from the asynchronous socket call is not placed into
your program variables until you issue the sync macro call. Please note
that the ECB= keyword must point to an Event Control Block (ECB) followed
by a 100 byte work area, which the socket macro interface will use to
store temporary status information in.

When you assemble your Sockets Extended macro programs, you must include
the tcpip.v3rl.SEZACMAC library in your assembler SYSLIB concatenation.
See "Assemble JCL Procedure" in topic I.1 for a sample assemble procedure.

When you bind your program with the MVS Binder, you must include the
tcpip.v3rl.SEZATCP library in your binder SYSLIB concatenation. See
"Link/Edit JCL Procedure" in topic I.4 for a sample MVS binder procedure.

4.5 REXX Sockets

The REXX language is well suited for the development of prototypes. As

REXX 1s an interpreted language, no time is lost by compilations. This is
very useful if you want to test a number of alternatives; once you have
saved a REXX procedure, you can run it. Also, REXX can be used for

production applications as long as the performance requirements are within
certain limits.

Coding REXX procedures for TCP/IP for MVS is pretty straightforward.

The only requirement for using the REXX socket interface is that you have
access to the tcpip.v3rl.SEZALINK library. This library will normally be
accessible through your system LINKLIST concatenation. If it is not, you
will have to concatenate it to your TSO STEPLIB allocation.

Some hints may be helpful:

Before using any other call, you have to identify the TCP/IP system

A Beginner's Guide to MVS TCP/IP Socket Programming 59

A Beginner's Guide to MVS TCP/IP Socket Programming

you are using with an initialize call.
In this call you specify the following:
- The jobname of the TCP/IP system address space.

- The name of your so-called socket set. This name can be anything
as long as it is used consistently within your Jjob.

- Optionally, you can specify the number of sockets you would like
to have preallocated, if the default of 40 is not appropriate.

Socketsets can be reused and should eventually be terminated. There
is an option to inquire if there are presently any available socket
set (s) . If you re-initialize a socketset that was not closed, you
will get an error.

If you run two REXX socket programs in each session of an ISPF split
environment, the two REXX programs must use different socketset names.

All TCP/IP for MVS REXX socket calls are implemented as REXX functions
that return a string that contains the return code as the first token.
(The standard REXX rec return code variable is not used, so a signal on
error statement does not cause the socket call errors to be caught.)

- If the call completed successfully, the return code is zero and
the remainder of the returned string may contain other
information, as defined by the called function.

- If the call did not complete successfully, an error message is
passed after the return code.

You can handle TCP/IP for MVS REXX return codes as follows:

parse value socket (function,other parameters) with rc rest
if rc=0 then parse value rest call related return values
else say 'Error, reason:' rest

If you are use to writing REXX procedures on 0S/2 and/or VM/CMS but
not on MVS, you should be aware that TSO/E requires you to start your
procedure explicitly with /* REXX ...*/. If you omit the word REXX,
it will not work.

Please see Appendix E, "Sample REXX Socket Programs" in topic E.0Q for a
sample REXX server and client program.

4.6 Pascal API

The Pascal programming interface is based on Pascal procedures and
functions that implement conceptually the same functions as the C socket
interface. The routines have different names though, so in practical
terms there is a considerable difference with the C socket calls.

You can use stream sockets, datagram sockets or raw sockets.

If you are a skilled Pascal programmer, you should be able to develop
socket programs relatively easily using this Pascal programming interface.

To compile a Pascal program, you need the IBM Pascal compiler and library
(5668-767) .

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

The include files you will need are in the tcpip.v3rl.SEZACMAC library,
which you will have to concatenate to the SYSLIB DD statement of your
Pascal compile JCL. The library routines are in the tcpip.v3rl.SEZACMTX
library, which you will have to concatenate to the SYSLIB DD statement of
your linkage editor.

4.7 Inter-User Communication Vehicle (IUCV) Sockets

The IUCV socket programming interface is language independent. It is
based on standard linkage calls for transferring data or control to IUCV
and on asynchronous exits implemented via IRBs (Interrupt Request Blocks)
for receiving data from IUCV. The programming interface is provided as
assembler macros.

The IUCV programming interface is only provided with IBM TCP/IP Version 3
Release 1 for MVS for reason of compatibility with IBM TCP/IP Version 2
Release 2 for MVS, and we will not describe it in any further detail in
this book.

Recommendation

|

| We will recommend that, wherever it makes sense, you use the Sockets
| Extended programming interfaces instead of the IUCV interface.
|
|

5.0 Chapter 5. Your First Socket Program

In this chapter we will guide you through the development of a simple
stream socket program. The program's purpose is to act as an iterative
echo server program. An echo server just returns any data it receives to
the client.

In this chapter we will explain all the basics of the individual socket
calls, the data structures that are used with the socket calls, and the
programming techniques associated with some of the more complicated socket
calls, and we will discuss some general security aspects of socket
programs.

See "Sample Stream Socket COBOL Server" in topic B.1 for the full sample
server code, and_"Sample Stream Socket COBOL Client" in topic B.2 for a
sample client that can be used to test the server.

The description will be fairly elaborate as this is the first time you are
facing actual socket programming. In the succeeding chapters, where we
look more into the CICS and IMS socket environments, we will not go into
the same kind of detail, but rather we will refer back to the examples you
find in this chapter. So even if your purpose for reading this book is to
develop IMS or CICS socket programs, we recommend you read this chapter
before continuing with the IMS and CICS chapters.

The coding examples in this chapter will be in COBOL and based on the
Sockets Extended call interface.

(o
—

o o Jor
> o N

Type Conversion Between Programming Languages
Iterative Server Program Structure

Initialize the Socket API

Create a Socket

Bind a Socket to a Specific Port Number

(o
o

A Beginner's Guide to MVS TCP/IP Socket Programming 61

A Beginner's Guide to MVS TCP/IP Socket Programming

(o

(1
[~

6 Listen for Client Connection Requests

Accepting Connection Requests from Clients
Transferring Data Over a Stream Socket

Closing a Connection

10 Blocking, Non-blocking and Asynchronous Socket Calls
11 Socket Programs and MVS Security

(1
[o¢]

(1
O

(o

(o

5.1 Type Conversion Between Programming Languages

We will not show you the samples in all available programming languages.
We have, for the major part of our samples, chosen COBOL because of both
its widespread use and readability. Most readers, who are not familiar
with COBOL, may be able to read the COBOL samples as pseudo-code. To
enable you to convert the variable declarations, we have included a short
type-conversion table (please see Table 0).

'text!'.

init ('text');

Generic type | assembler | COBOL | PL/I | C/3
| | | |

4 byte binary integer | name DC F'0' | name pic S9(8) binary | dcl name fixed(31) | lonc
| | value zero. | binary init (0); |
| | | |

2 byte binary integer | name DC H'O' | name pic S9(4) binary | dcl name fixed(15) | int
| | value zero. | binary init (0); |
| | | |

String of n bytes | name DC CLn'text' | name pic X(n) value | dcl name char (n) | chazt
| | | |
| | | |

Notes:

name denotes identifier name

able 6. Language Type Definition Conversion

5.2 Iterative Server Program Structure

The reason we start with an iterative server is because it is quite simple
to implement, and it allows us to introduce all the major basic socket
calls with which you will have to work.

If each connection from a client is of a short duration, you may implement
your server as an iterative server.

A typical scenario for an iterative server is that the client and the
iterative server exchange a single request/reply sequence per connection.

If the lifetime of a connection is of a longer duration, involving a
sequence of request/reply interactions possibly with user think-time
involved, you should consider implementing your server as a concurrent
server.

Server process

Obtain a socket 2
Bind socket to server port 3

| |
Client process | Initialize socket api 1 |
| |
| |

A Beginner's Guide to MVS TCP/IP Socket Programming

62

A Beginner's Guide to MVS TCP/IP Socket Programming

Initapi		Issue passive open 4
Obtain socket	5	Do Forever
Connect to server	>	Accept a connection request
Send data >Receive client data 6		
		Process data
Receive reply< Send reply to client 7		
Close connection	< > Close connection	
Termapi	8 end	

|
|
| Termapi
|
|

Figure 28. Iterative Server Main Logic

The sequence numbers in the following text are related to the
corresponding numbers in Figure 28.

From a socket interface point of view, there is no difference between an
iterative server that is implemented as a native MVS program, as a CICS
transaction program or an IMS transaction program. The only difference is
the way the iterative server program is started.

MVS You can start the server as a batch job, as a started task, as a
TSO transaction or as an APPC/MVS transaction.

IMS You can start your iterative server as a Batch Message Program
(BMP) or as a long-running Message Processing Program (MPP) .

CICS You can start the server as a long-running CICS task.

5.3 Initialize the Socket API

1 in Figure 28 in topic 5.2. For the Sockets Extended programming
interface, the first call is an initapi call, where you identify your own
process to the TCP/IP system address space.

* *
* Variables used for the INITAPI call *
* *
01 soket—initapi pic x(16) value 'INITAPI ',
01 maxsoc pic 9(4) Binary Value 50.
01 initapi-ident.
05 tcpname pic x(8) Value 'T18ATCP'.
05 myasname pic x(8) Value space.
01 subtask pic x(8) Value space.
01 maxsno pic 9(8) Binary Value zero.
01 errno pic 9(8) Binary Value zero.
01 retcode pic s9(8) Binary Value zero.
* *
* Initialize socket API *
* *
Call 'EZASOKET' using soket-initapi
maxsoc
initapi-ident
subtask
maxsno
errno
retcode.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

If retcode < 0 then
- process error -

You use the initapi call to both establish a communication path between
your program and a TCP/IP address space, and identify your program to that
TCP/IP address space.

If you have both a test and a production TCP/IP system executing in your
MVS environment, you can control which system you are using via the
TCPNAME parameter. You must initialize this parameter with the correct
address space name of your TCP/IP system address space. The Sockets
Extended programming interface does not pick up any default value from the
tcpip.v3rl.TCPIP.DATA configuration data set.

Your MVS system

TCPPROD		TCPTEST
TCP/IP		TCP/IP
	< ? >	

| Socket program |
| |
| TCPNAME=TCPPROD |
| or |
| TCPNAME=TCPTEST |
| |

Figure 29. Identifying Your TCP/IP Address Space via TCPNAME

If you receive an error number of 10191 (IUCV returned an error code)
during initapi processing, the most likely reason is that you did not
specify a TCPNAME value that matches the name of any currently active
TCP/IP system address space.

Ask your MVS TCP/IP systems programmer for the name of the TCP/IP system
address space. You may want to implement logic that allows you to pass
the name via, for example, either the PARM field on the EXEC JCL statement
or a parameter SYSIN file that your program reads before it issues the
initapi call. If you implement such logic, your operations department is
able to change the TCP/IP setup without having to ask you to modify your
program.

In order to identify your program, you use the fields MYASNAME and
SUBTASK.

Single—-threaded

A Beginner's Guide to MVS TCP/IP Socket Programming 64

A Beginner's Guide to MVS TCP/IP Socket Programming

I
| SUBTASK?2 | I
I I I

application TCP/IP System Address Space
| JOBNAME1 < I |
| SUBTASK1 I |1 I
| I I
| |Client IDs |

I I

Multi-threaded | _>JOBNAME1/SUBTASK1 |
application >JOBNAME2 /SUBTASK1 |
| _>JOBNAME2 /SUBTASK2 |

M I [I
| |JOBNAME2<_ | (| |
| | SUBTASK]1 | | [|
Il I I I I
M I I I
| | JOBNAME2< (| |
I I I
I I I
I I I

Figure 30. Identifying Your Own Program with a Client ID

You can use any values you find relevant, but the combination of address
space name and subtask ID must be different from the values used by any
other program that connects to the same TCP/IP system address space.

For a single-threaded program, you can pass MYASNAME and SUBTASK
initialized to space (X'40'). The Sockets Extended programming interface
will pick up your correct address space name. However, your subtask ID
will be 8 blanks. That will work for a single-threaded socket program,
like our sample iterative echo server, but it will not work for
multi-threaded programs, as each subtask must have a unique subtask ID.
See "TPICLNID Obtain Values for TCP/IP Client ID" in topic G.1 for a
sample subroutine that will return the current address space name and Task
Control Block (TCB) address as two 8-byte character fields that you can
use as MYASNAME and SUBTASK from both single-threaded and multi-threaded
socket programs in a native MVS environment.

Note: 1In a CICS environment the subtask ID has a slightly different
meaning. In CICS, all programs run under one MVS task control block.
This is also the case for a concurrent server implementation. You can,
instead of the TCB address, use the internal CICS task number as the
source for your subtask ID. In a CICS program, you can find your current
CICS task number by picking up the EIBTASKN field in the CICS command
level interface block (EIB). Convert the task number to an EBCDIC
representation and make that part of your subtask ID. If your current
CICS task number is, for example, 129, you can use a subtask ID of
00000129; or, to identify it uniquely as a CICS task number and not a TCB
address, you may prefix or suffix it by a non-hexadecimal character:
00001209T.

We recommend that you always pass a subtask ID on the initapi call in a
CICS program. If you have two CICS socket programs that start at the same
time and they both use a subtask ID of space, they will both specify the
same client ID, as they both execute in the same address space.

MYASNAME and SUBTASK are used to complete a structure that is called the
client ID structure. The client ID is specific to the IBM TCP/IP for MVS

A Beginner's Guide to MVS TCP/IP Socket Programming 65

A Beginner's Guide to MVS TCP/IP Socket Programming

implementation. It is the identifier by which a process is known to the
TCP/IP address space in MVS, hence the term client ID, which must be
interpreted as the client of the TCP/IP system address space. Do not
confuse this client ID with the client/server role of your application
programs. From the TCP/IP system address space point of view, every
application program in your MVS system that uses TCP/IP facilities is a
client of the TCP/IP system address space. This client ID has actually
nothing to do with the underlying protocols (TCP, UDP or IP). It is never
exchanged over the IP network. The client ID is unique for the IBM TCP/IP
for MVS socket interfaces. It is not part of the original BSD
specifications.

0

| Domain | 4 bytes binary AF_INET = 2

+4 | |
| Address | 8 bytes character jobname/address space name
| Space name |

+12 | |
| Subtask ID | 8 bytes character subtask/task ID
| |

+20 | |
| Reserved | 20 bytes reserved (must be binary zeroes)
| |

+40 | |

Figure 31. The Client ID Structure

Note: Please observe that the domain field in the client ID structure is
a 4-byte field and not a 2-byte field.

The MAXSOC parameter on the initapi call is used to reserve storage for
the maximum number of sockets this program intends to work with
concurrently. The default value is 50 and the maximum in IBM TCP/IP
Version 3 Release 1 for MVS is 2000.

The MAXSNO parameter is an output parameter from the initapi call. When
the call returns to your program, it contains the highest socket
descriptor number that can be assigned to your program.

5.3.1 Initializing a C-socket Program
5.3.2 Getclientid

5.3.1 Initializing a C-socket Program

In the C-socket API, you do not have an initapi function.

When the C-socket API processes the first valid socket call in a
C-program, it performs a function that is equivalent to the initapi call.
The C-socket API locates the TCP/IP address space to connect to via the
tcpip.v3rl.TCPIP.DATA configuration data set. You can override the
installation default by allocating the TCPIP.DATA data set of a test
TCP/IP system to a DD name of SYSTCPD in the address space in which your C
program executes. A socket call return code of EIBMIUCVERR accompanied by
CONNECT error messages with a return code of 1011 usually means that you
try to use a TCP/IP system address space that is not currently active on
your MVS system.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

If you use C-sockets, you have no influence on the content of your client
ID. The C socket library routines sets it to the name of your address
space and an EBCDIC representation of a storage address, which meaning is
known to the C runtime environment.

A C-socket program may use the maxdesc socket call to increase the number
of available socket descriptors.

5.3.2 Getclientid

You can, in all environments, retrieve your client ID by using the
getclientid call. This call will return a client ID structure with the
current client ID of the calling process.

* *
* Variables used by the GETCLIENTID Call *
* *
01 soket—getclientid pic x(16) value 'GETCLIENTID ',
01 clientid.
05 clientid-domain pic 9(8) Binary.
05 clientid—-name pic x(8) wvalue space.
05 clientid-task pic x(8) wvalue space.
05 filler pic x(20) value low-value.

01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
* *
* Let us see the client-id *
* *
Call 'EZASOKET' using soket-getclientid

clientid
errno
retcode.

If retcode < 0 then
- process error -—

When you write iterative server programs, you are normally not concerned
with the client ID, but if you write concurrent server programs, you use
client IDs to give sockets to and take sockets from.

The getclientid call is not part of the original BSD socket
implementation. If you use it in C-programs, you must consider
portability issues if you want to be able to port your C-program to other
operating system platforms.

5.4 Create a Socket

2 in Figure 28 in topic 5.2. The server obtains a socket via the socket
call. You must specify to what domain the socket belongs and what type of
socket you want.

* *
* Variables used for the SOCKET call *
* *
01 soket-socket pic x(16) value 'SOCKET '
01 afinet pic 9(8) Binary Value 2.
01 soctype-stream pic 9(8) Binary Value 1.
01 proto pic 9(8) Binary Value zero.
01 socket-descriptor pic 9(4) Binary Value zero.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

01 errno pic 9(8) Binary Value zero.
01 retcode pic s9(8) Binary Value zero.

* *

* Get us a socket descriptor *
* *
Call 'EZASOKET' using soket-socket
afinet
soctype-stream
proto
errno
retcode.
If retcode < 0 then
- process error -—
else
Move retcode to socket-descriptor.

The internet domain has a value of two. A stream socket is requested by
passing a value of one as type. The proto field is normally zero, which
means that the socket API should choose the protocol to use for the domain
and socket type requested. In this example the socket will use TCP
protocols.

A socket descriptor representing an unnamed socket is returned from the
socket call. An unnamed socket has no port and no IP address information
associated; only the protocol information is available. The socket
descriptor is a 2-byte binary field and must be passed on subsequent
socket calls as such.

A socket is an unhandy concept for a program to work with because it
consists of three different things: a protocol specification, a port
number and an IP address. To represent the socket in a more handy way, we
use the socket descriptor.

The socket descriptor is not in itself a socket, but it represents a
socket and is used by the socket library routines as an index into a table
of sockets owned by a given MVS TCP/IP client (represented by a client ID:
address space name and task ID). On all socket calls that reference a
specific socket, you must pass the socket descriptor that represents the
socket with which you want to work.

Socket Descriptor Socket
0 Our Listen socket
1 Our connected socket

Figure 32. MVS TCP/IP Socket Descriptor Table

The first socket descriptor your program is assigned is zero for a Sockets
Extended program. If your program is a C-program, socket descriptors
zero, one and two are reserved for std.in, std.out and std.err, and the
first socket descriptor that is assigned for your AF_INET sockets is three
or higher.

When a socket is closed, the socket descriptor becomes available and will

be returned as a new socket descriptor representing a new socket at a
succeeding request for a socket.

A Beginner's Guide to MVS TCP/IP Socket Programming

68

A Beginner's Guide to MVS TCP/IP Socket Programming

In the reference documentation, the socket descriptor is normally
represented by a single letter: S or as two letters: SD.

When you have the socket descriptor, you can request the socket address
structure from the socket programming interface via the getsockname call.
Remember that a socket is not fully named (including both port and IP
address) until after a successful bind, connect, or accept call.

If your socket program is capable of handling more sockets simultaneously,
you must keep track of your socket descriptors. A good idea is to build a
socket descriptor table inside your program where you store information
related to the socket and the status of the socket. You will need this
information if, for example, you use the select call. Besides that
purpose, it is good to have in debugging situations.

5.5 Bind a Socket to a Specific Port Number

3 in Figure 28 in topic 5.2. The socket is bound to a specific port
number via the bind call. By binding the socket to a specific port
number, you avoid having an ephemeral port number assigned to the socket.

For servers it would be rather inconvenient to have an ephemeral port
number assigned, because clients would have to connect to different port
numbers for every instance of the server. By using a predefined port
number, clients can be developed so they always connect to the same port
number.

Client programs may also use the bind socket call, but normally client
programs do not benefit from using the same port number every time they
execute.

* *
* Variables used for the BIND Call *
* *
01 soket-bind pic x(16) value 'BIND '
01 server-socket-address.
05 server—afinet pic 9(4) Binary Value 2.
05 server-port pic 9(4) Binary Value 9998.
05 server-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.
01 socket-descriptor pic 9(4) Binary.

01 errno pic 9(8) Binary Value zero.
01 retcode pic s9(8) Binary Value zero.
* *
* Bind socket to our server port number *
* *

Call 'EZASOKET' using soket-bind
socket-descriptor
server—socket—-address
errno
retcode.

If retcode < 0 then
- process error -

Before you issue this call, you must build a socket address structure for
your own socket with the following information:

1. Addressing family = two, which means: AF_INET.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

2. Port number for your server application. For a Sockets Extended
program, you will have to use a predefined port number, which is
either a constant in your program or is passed to your program as an
initialization parameter. If you develop your socket program in C,
you can issue a getservbyname call to find the port number that is
reserved for your server application in the tcpip.v3rl.ETC.SERVICES

data set.
3. IP address on which your server application will accept incoming
requests. If your application is executing on a multihomed host and

you want to accept incoming requests over all available network
interfaces, you must set this field to binary zeroes, which means:
INADDR_ANY.

Until this point, you have not told TCP/IP anything about the purpose of
the socket you obtained. You can use it as a client to issue connect
requests to servers in the IP network, or you can use it to become a
server yourself.

In socket terms, the socket at the moment is an active socket, which is
the default status for a newly created socket.

5.6 Listen for Client Connection Requests

4 in Figqure 28 in topic 5.2. When you call listen, you inform TCP/IP
that you intend to be a server that will accept incoming requests from the
IP network. By doing so, the socket status is changed from its default
active status to a passive socket.

A passive socket does not take the initiative to initiate a connection; it
just waits passively for clients to connect to it.

* *

* Variables used by the LISTEN Call *

* *

01 soket-listen pic x(16) value 'LISTEN '
01 backlog—-queue pic 9(8) Binary Value 10.

01 socket-descriptor pic 9(4) Binary.

01 errno pic 9(8) Binary Value zero.
01 retcode pic s9(8) Binary Value zero.
* *
* Issue passive open via Listen call *
* *

Call 'EZASOKET' using soket-listen
socket-descriptor
backlog-queue
errno
retcode.

If retcode < 0 then
- process error -—

The backlog queue value is used by the TCP/IP address space when a connect
request arrives and your server program is already connected to another

client and is busy serving that client's request. TCP/IP will queue new
connection requests up to the number you specify in the backlog queue
parameter. If further connection requests arrive, they will be rejected

by TCP/IP. You cannot in a C program specify a backlog value that exceeds
the value assigned to SOMAXCONN in the socket header file supplied in
tcpip.v3rl.SEZACMAC. The current implementation of IBM TCP/IP for MVS

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

uses a value of 10. Most UNIX systems use a default value of 5 for the
backlog queue.

The listen call does not establish any connections; it just turns the
socket into a passive state, so it is prepared for connection requests
from the IP network. If a connection request for this server arrives
between the time of the listen call and the succeeding accept call, it
will be queued according to the backlog value passed on the listen call.

5.7 Accepting Connection Requests from Clients

5 in Figure 28 in topic 5.2. The accept call dequeues the first queued
connection request or blocks the caller until a connection request arrives
over the IP network.

* *
* Variables used by the ACCEPT Call *
* *
01 soket—accept pic x(16) value 'ACCEPT '
01 client-socket—address.
05 client-afinet pic 9(4) Binary Value zero.
05 client-port pic 9(4) Binary Value zero.
05 client-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.
01 accepted-socket-descriptor pic 9(4) Binary Value zero.
01 socket-descriptor pic 9(4) Binary.
01 errno pic 9(8) Binary Value zero.
01 retcode pic s9(8) Binary Value zero.
* *

* Start iterative server loop with a blocking Accept Call
* *
Call 'EZASOKET' using soket-accept
socket-descriptor
client-socket-address
errno
retcode.
If retcode < 0 then
- process error -—
else
Move retcode to accepted-socket-descriptor.

This call works with two socket descriptors:
1. The first socket descriptor is representing the socket that was
obtained, bound to the server port and optionally IP address, and

turned into a passive state via the listen call.

2. The accept call will return a new socket descriptor, which will
represent a complete association:

Accepted_socket_descriptor represents:
{TCP, server IP address, server port, client IP address, client port}

The original socket, which was passed to the accept call, is unchanged
and is still representing only our server half association:

Original_socket_descriptor represents:
{TCP, server IP address, server port}

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

When control returns to your program, the socket address structure passed
on the call has been filled with the socket address information of the
connecting client.

The succeeding socket calls for the exchange of data between the client
and the server will use the new socket descriptor. The original socket
descriptor will remain unused until the iterative server has finished
processing the client request, and it has closed the new socket. The
iterative server will then reissue the accept call using the original
socket descriptor and wait for a new connection.

5.8 Transferring Data Over a Stream Socket

6 and 7 in Figure 28 in topic 5.2. The stream concept implies two
continuous streams of bytes flowing independent of each other in opposite
directions.

In the case of stream sockets there is no one-to-one correspondence

between send calls on one side and receive calls on the other side. Data,

for example, that is sent by a single send call may have to be retrieved

by a number of successive recv calls. The other way around may be equally

likely.

The TCP protocol layer does not know anything about application-related
boundaries on the stream; it is unaware of application records. As a
consequence of this, part of your application design must be to develop a
message design that your two application partners can use to determine
when to stop issuing receive calls, when to start processing, and when to
send something back. This design is important because, if two

applications wait for each other to send data on the stream, they can wait

forever.

The socket APIs do provide a technique to determine if any data on the
stream is ready to be received. This is done via an ioctl socket call
with a command of FIONREAD. The number of bytes that are currently
available to be read from the stream is returned in the RETARG parameter
as a binary full-word.

You can use the ioctl call to learn how many bytes are currently available

to be read and then issue a recv call for that amount of bytes. But, if
the message you expect to receive is longer than the available bytes, you
have to wait a short amount of time and then repeat the process until you
have the full message. This technique allows you to detect a faulty
partner program that does not send a full message. You can implement
timeout logic that determines the partner program is in error if you have
not received a full message within a predefined amount of time.

Note

It is important to note that TCP leaves the design of application
records and application protocols entirely to the application
developer.

Streams and Messages
Reading and Writing Data From and To a Socket
.8.3 Data Representation

5.8.1
5.8.2

(o

A Beginner's Guide to MVS TCP/IP Socket Programming

72

A Beginner's Guide to MVS TCP/IP Socket Programming

5.8.1 Streams and Messages

How do you design an application protocol so that the partner program is
able to chop the receive stream into individual messages?

Some socket applications are so simple that the receiver can just go on
receiving data until the sender closes the socket. This might be the case
for a simple file transfer application. Most applications are not that
simple and usually require that the stream can be divided into a number of
distinct messages.

A message exchanged between two socket programs must imbed information so
that the receiver is able to decide how many bytes to expect from the
sender and optionally what to do with the received message. The last
aspect may not be important for some applications if the function of the
application is so limited that all messages are treated in the same way;
however, the first aspect is important to all applications.

There are a couple of commonly used techniques to imbed information about
the length of a message into the stream as follows:

1. The message type identifier technique

If your messages are fixed length messages, you can implement a
message ID per message type you work with. Each message type has a
predefined length that is known by your client and server program. If
you place the message ID in the start of each message, the receiving
program is able to decide how long the message is (if it knows the
content of the first couple of bytes in the message).

* *

* Layout of a message between TPI client and TPI server
*

01 tpi-message.

05 tpi-message-id pic x.
88 tpi-request-add value '1l'.
88 tpi-request-update value '2'.
88 tpi-request-query value '3'.
88 tpi-request-delete value '4'.
88 tpi-query-reply value 'A'.
88 tpi-response value 'B'.
05 tpi-constant pic x(4).
88 tpi-identifier value 'TPI '.

Each message ID is associated with a fixed length, which is known to
your application.

2. The record descriptor word (RDW) technique

If your messages are variable length messages, you can implement a
length field in the beginning of each message. Normally you would
implement the length in a binary half-word with the value encoded in
network byte order, but you may as well implement it as a text field.

* *

* Transaction Request Message segment
*

01 TRM-message.
05 TRM-message-length pic 9(4) Binary Value 20.
05 filler pic x(2) Value low-value.

A Beginner's Guide to MVS TCP/IP Socket Programming 73

A Beginner's Guide to MVS TCP/IP Socket Programming

05 TRM-identifier pic x(8) Value '*TRNREQ*'.
05 TRM-trancode pic x(8) Value '???27??'.
3. The end-of-message marker technique

A third technique that is most often seen in C-programs is to send a
null-terminated string. A null-terminated string is a string of bytes
terminated by a byte with binary zero. The receiving program reads
whatever data is on the stream and then loops through the received
buffer separating each record where a null-byte is found. When the
received records have been processed, the program issues a new read
for the next chunk of data on the stream.

If your messages only contain character data, you may designate any
non-display byte value as your end-of-message marker. Although this
technique is most often seen with C-programs, it may be used with any
programming language.

4. The TCP/IP buffer flushing technique

This technique is based on the observed behavior of the TCP protocol,
where a send call followed by a recv call forces the sending TCP
protocol layer to flush its buffers and forward whatever data may
exist on the stream to the receiving TCP protocol layer. You can use
this behavior to implement a half-duplex, flip-flop application
protocol, where your two partner programs acknowledge the receipt of
each message with, for example, a one-byte application acknowledgement

message.
Client Program Client TCP Server TCP Server Program
Buffer Buffer
SEND 80 bytes RECV 1000 bytes
| XXXXXXX | > | XXXXXXX |
[[
RECV 1 byte <flushing> > | XXXXXXX | > | XXXXXXX| RETCODE=80
[[
SEND 1 byte ACK
[Af<__ [|A]
[_1 [_1
[A|< [A|< <flushing> RECV 1000 bytes
[_1 [_1
SEND 85 bytes
[YYYYYYY | >|YYYYYYY|
[[
RECV 1 byte <flushing> >|YYYYYYY) >|YYYYYYY| RETCODE=85
[[
SEND 1 byte ACK
[A|< [A]

A Beginner's Guide to MVS TCP/IP Socket Programming 74

A Beginner's Guide to MVS TCP/IP Socket Programming

-——— and so it continues —--——-—

Figure 33. The TCP Buffer Flush Technique

In the above example, the client sends an 80 byte message. The server
has issued a recv call for 1000 bytes but receives only the 80 bytes
(RETCODE=80) . The problem with this technique is that there is no
guarantee that the server will receive the full 80-byte message on its
receive call. It might only receive, for example, 30 bytes; but, with
this technique, it has no way of detecting that it is missing another
50 bytes. The smaller the messages are the less likely it is that the
server will only receive a part of the full message but you can never
be fully sure.

If your partner program resides on any computer, ranging from
mainframe computers to the smallest personal computer of any kind, you
should not rely on this observed behavior; but use one of the safer
techniques mentioned earlier.

Recommendation

| |
| We have included this technique in our description because we know |
| it is widely used but we recommend that you only use it in |
| controlled environments or in programs where you use non-blocking |
| socket calls to implement your own time-out logic. |
| |
| |

The first two techniques require that the receiving program is able to
learn what is the content of the first bytes in the message, before it
actually reads the entire message.

One way of solving this problem is to use the peek flag on a recv socket
call.

A recv call with the peek flag on does not remove the data from the TCP
buffers, but just copies the amount of bytes, you requested, into the
application buffer you specified on the reecv call.

If your message length field or message ID field is located, for example,
within the first five bytes of each message, you can issue the following
recv call:

* *
* Peek buffer and length fields for RECV call *
* *
01 soket-recv pic x(16) value 'RECV '
01 recv-flag-peek pic 9(8) Binary value 2.
01 recv-peek-len pic 9(8) Binary value 5.
01 recv-peek-buffer.
05 message-id pic x value space.
88 tpi-query-reply value 'A'.
88 tpi-response value 'B'.
05 message-constant pic x(4).
88 tpi-identifier value 'TPI '.
01 socket-descriptor pic 9(4) Binary Value zero.
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

* *
* Peek at first 5 bytes of client data *
* *

Call 'EZASOKET' using soket-recv
socket-descriptor
recv-flag-peek
recv-peek-len
recv-peek-buffer
errno
retcode.
If retcode < 0 then
- process error -—
If retcode = 0 then
- process client closed socket -
If not TPI-identifier then
- translate recv-peek-buffer from ASCII to EBCDIC -

The recv call will block until some bytes have been received or the sender
closes its socket. The above example is not complete because you cannot
be sure that you actually received the requested 5 bytes. Your call may
come back to you with only 1 byte received. 1In order to cope with that
situation, you will have to repeat your recv call until all 5 bytes have
been received. See "Reading and Writing Data From and To a Socket" in
topic 5.8.2 for the technique to use.

If the other half connection closes the socket, the recv call will return
zero in the retcode field.

The data is copied only into your application program buffer; it is still
available for a real recv call, where you can specify the full length of
the message you now know is available.

5.8.2 Reading and Writing Data From and To a Socket

Stream sockets during read and write calls may behave in a way that at a
first glance you would expect to be an error. The read call may return
fewer bytes, and the write call may write fewer bytes than requested.

This is not an error, but a normal situation which your programs must deal
with when they read or write data over a socket.

You may have to use a series of read calls to read a given number of bytes
from a stream socket.

Each successful read call, returns in the retcode field, how many bytes
were actually read. If you know you have to read, for example, 4000 bytes
and the read call returns 2500, you have to reissue the read call with a
new requested length of 4000 minus the 2500 already received (1500).

If you develop your program in COBOL, the following example will show you
an implementation of such logic. In this example, the message to be read
has a fixed size of 8192 bytes.

* *
* Variables used by the READ call *
* *
01 soket-read pic x(16) value 'READ '
01 read-request-read pic 9(8) Binary Value zero.
01 read-request-remaining pic 9(8) Binary Value zero.
01 read-buffer.
05 read-buffer-total pic x(8192) Value space.

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

05 read-buffer-byte redefines read-buffer-total
pic x occurs 8192 times.

01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
* *
* Read 8K block from server *
* *

move zero to read-request-read.
move 8192 to read-request-remaining.
Perform until read-request-remaining = 0
Call 'EZASOKET' using soket-read
socket-descriptor
read-request-remaining
read-buffer-byte (read-request-read + 1)
errno
retcode
If retcode < 0 then
- process error and exit -
end-if
Add retcode to read-request-read
Subtract retcode from read-request-remaining
If retcode = 0 then
Move zero to read-request-remaining
end-if
end-perform.

An actual execution of the program, with the above logic, used four read
calls to retrieve the 8K of data. The first call returned 1960, the
second call 3920, the third 1960 and the final call 352 bytes. It is not
possible to predict in advance how many calls are needed to retrieve the
message. It depends on the internal buffer utilization in TCP/IP. We
observed other test cases where only two calls were needed to retrieve 8K.

In general, it would be good programming practice, whenever you know how
many bytes to read, to issue read calls imbedded in logic, which is
similar to the above.

If you work with short messages, you will in most situations receive the
full message on the first read call; but there is absolutely no guarantee
that it will work in all situations.

The behavior of a write call is similar to that of a read call. You may
have to issue more write calls in order to write out all the data you want
to write.

* *
* Buffer and length fields for write operation *
* *
01 soket-write pic x(16) value 'WRITE ',
01 send-request-sent pic 9(8) Binary value zero.
01 send-request-remaining pic 9(8) Binary value zero.
01 send-buffer.
05 send-buffer-total pic x(8192) value space.

05 send-buffer-byte redefines send-buffer-total
pic x occurs 8192 times.

01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
* *
* Send 8K data block *
* *

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

move 8192 to send-request-remaining.
move 0 to send-request-sent.
Perform until send-request-remaining = 0
Call 'EZASOKET' using soket-write
socket-descriptor
send-request-remaining
send-buffer-byte (send-request-sent + 1)
errno
retcode
If retcode < 0 then
- process error and exit -
end-if
add retcode to send-request-sent
subtract retcode from send-request-remaining
If retcode = 0 then
Move zero to send-request-remaining
end-if
end-perform.

There are three groups of calls to use for reading and writing data over
sockets:

read and write. These calls can only be used with connected sockets.
No processing flags can be passed on these calls.

recv and send. These calls also only work with connected sockets.
You can pass processing flags on these calls:

NOFLAG - read or write data the same way as a read
call or a write call would.

OOB - read or write Out Of Band data (expedited
data) .

PEEK - peek at data, but do not remove data from
the buffers.

recvfrom and sendto. These calls work with both connected and
non-connected sockets. You can pass addressing
information directly as parameters on these calls.
The available flags are the same as described above.

A connected socket is either a stream socket for which a connection has
been established, or it is a datagram socket for which you have issued a
connect call to specify the remote datagram socket address.

5.8.3 Data Representation

If you use the socket API, your application must handle the issues related
to different data representations on different hardware platforms. For
character based data, some hosts use ASCII, while other hosts use EBCDIC.
Translation between the two representations must be handled by your
application. For integers, some hardware platforms use the big endian
byte order approach (S/370/390, Motorola style), while others use little
endian byte orders (Intel style)._ Figqure 34 shows an example of the
difference between big and little endian byte orders.

big endian |high-order byte |low-order byte |

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

| |
addr A addr A+1
| |
v A\

little endian |low-order byte |high-order byte |
| | |

Figure 34. Big or Little Endian Byte Order for a 2-Byte Integer

IBM S/370 and S/390 based computers all use the big endian byte order,
while an IBM PS/2 uses the little endian byte order.

For data in protocol headers, these matters have been taken care of.
TCP/IP has defined a network byte order standard to be used for all 16-bit
and 32-bit integers that appear in protocol headers. This network byte
order is based on the big endian byte order. This is the reason why, in
the C-socket interface, you will find function calls like the following:

htons This translates a short integer (2 bytes) from host byte order
to network byte order.

ntohs This translates a short integer from network byte order to host
byte order.

htonl This translates a long integer (4 bytes) from host byte order to
network byte order.

ntohl This translates a long integer from network byte order to host
byte order.

For the application data part of a message, it is all up to your
socket-based application to deal with these matters. If you develop a
server that serves clients on different hardware platforms, you must
define your own standard and implement it as part of your application
protocol.

In some instances it will be easiest for you to base your messages on text
data. If you, as part of your message design, define a fixed text string
in the beginning of each message, your application can test the contents
of this string and decide if the data is in EBCDIC or is in ASCII. If the
data is in ASCII, you can translate the full message from ASCII to EBCDIC
on input and from EBCDIC to ASCII on output from MVS. An example of this
design is the Transaction Request Message format used by the IMS Listener
program. Bytes 4 to 11 have a fixed value of *TRNREQ*, which is used both
to distinguish this message from other messages and to find out if the
client is transmitting data in ASCII or EBCDIC.

If you mix text data and binary data in your messages, you must be sure to
only apply translation between ASCII and EBCDIC to the text fields in your
message.

If you use binary integer fields in your messages, it is recommended that
you use the network byte order standard, which TCP/IP uses for all

integers in protocol headers. If you design your messages according to
the network byte order standard, your MVS programs do not need to
translate or rearrange the bytes in binary integer fields. Your programs

executing on little-endian hosts must use the integer conversion routines

A Beginner's Guide to MVS TCP/IP Socket Programming

79

A Beginner's Guide to MVS TCP/IP Socket Programming

to convert integers between local format and the format used in the
messages they exchange with your MVS programs.

Text data and binary two and four byte integers are fairly easy to handle
in a heterogeneous computer environment. When it comes to more complex
data types like floating point numbers or packed decimal, it becomes much
more complicated because there is no generally accepted standard, and
there is no easy support for transforming between the different formats.
If you include these data types in your messages, be sure that the partner
program knows how to interpret them. If the two computer systems use the
same architecture, this is fully valid. If you exchange messages via
socket programs between two MVS systems, you do not need to be worried
about conversion.

5.9 Closing a Connection

For a connection-oriented reliable protocol, closing a socket imposes some
problems because the TCP protocol layer must ensure that all data has been
successfully transmitted and received before the socket resources can be
safely freed at both ends.

The program that starts the close-down process, by issuing the first close
call, is said to do an active close. The program that does the close
call, as a consequence of the other program's close call, is said to do a
passive close.

Program A TCP layer A TCP layer B Program B

FIN segment sequence x

Call CLOSE >

FIN segment sequence y
Call CLOSE

| |
| |
| |
| |
| |
| ACK sequence x+1 |
| |
| |
| |
| |
| |
|

ACK sequence y+1 |

TIMEWAIT | > | CLOSED
state | |state
| |
(2 * MSL)
|
CLOSED |
state |

Figure 35. Closing Sockets
Program A does the active close, while program B does the passive close.

When a program calls the close socket function, the TCP protocol layer
sends a segment that is known as a FIN (FINish) segment.

When program B receives the last acknowledgement segment, it knows that
all data has been successfully transferred and that A has received and

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

processed the final FIN segment. The TCP protocol layer for program B can
then safely remove the resources that were occupied by program B's socket.

The TCP protocol layer for program A sends out an acknowledgement to the
FIN segment it received from B; but program A's TCP protocol layer does
not know if that ACK segment arrived at program B's TCP protocol layer or
not. It must wait a reasonable amount of time to see if the final FIN
segment from B is retransmitted indicating that B never received the final
ACK segment from A. In that case, A must be able to retransmit the final
ACK segment.

Program A's socket cannot be freed until this time period has elapsed.
The time period is defined to be twice the maximum segment life time, and
it is normally between one and four minutes, depending on the TCP
implementation.

If program A is the client in a TCP connection, this TIMEWAIT state does
not impose any major problems. A client normally uses an ephemeral port
number; and, if the client restarts before the TIMEWAIT period has
elapsed, it is just assigned another ephemeral port number.

If program A, on the other hand, is the server in a TCP connection, this
TIMEWAIT state does impose a problem. A server binds its socket to a

predefined port number; and, if the server tries to restart and bind the
same port number before the TIMEWAIT period has elapsed, it will receive

an EADDRINUSE error code on the bind call. This situation may arise if a
server crashes and you try to restart it immediately before the TIMEWAIT
period has elapsed. In that case, you just have to be a little patient

before you restart your server.

If the server is an important server and you cannot wait these one to four
minutes, you may use the setsockopt call in the server to specify
SO_REUSEADDR before it issues the bind call. In that case, the server
will be able to bind its socket to the same port number as before even if
the TIMEWAIT period has not elapsed; but the TCP protocol layer still
prevents it from establishing a connection to the same partner socket
address within the TIMEWAIT period. As clients normally initiate
connections and clients use ephemeral port numbers, the probability of
this situation arising is not very high.

5.9.1 Half Close
5.9.2 The Linger Option

5.9.1 Half Close

If you only want to close the stream in one direction, but still allow
data to be transferred in the other direction, you may use the shutdown
socket call instead of the close call. On the shutdown call, you are able
to specify in which direction the stream should be closed down.

See Table 7 for effects on read and write calls when the stream is being
shut down in one or both directions.

Table 7. Effect of Shutdown Socket Call

Socket calls in local

|

|

| Local program Remote program
| program

|

|

|

Shutdown RECEIVE | Shut
|

Error number EPIPE on |

|
|
| Shutdown SEND | Shutdown RECEIVE
|
|

write type calls Error number EPIPE on |

A Beginner's Guide to MVS TCP/IP Socket Programming 81

A Beginner's Guide to MVS TCP/IP Socket Programming

not be returned until yet another write call is issued.

| | first call | | second call (1) |

| | | | |

| read type calls | | Zero length return | | Zerc
| | | code | | code
| | | | |

| Note:

|

| 1. If you issue two write calls immediately after each other, both may be successful and an EPIPE ¢
|

|

5.9.2 The Linger Option

By default a close socket call will return control to your program
immediately, even if there is unsent data on the socket that still has to
be transmitted. The data will be transmitted by the TCP protocol layer,
but your program will not be notified of any errors. This is true for
both blocking and non-blocking sockets.

You can request that you do not want control returned to your program
before any unsent data has been transmitted and acknowledged by the
receiver. You do so via the SO_LINGER option on a setsockopt call before
you 1issue the actual close call. On the setsockopt call you pass the
following two option value fields:

ONOFF This is a full-word used to enable or disable the SO_LINGER
option. Any non-zero value enables the option. A zero value
disables the option.

LINGER This is the linger time in seconds. This is the maximum time the
close call will linger. If data is successfully transmitted
before this time interval, control will be returned to your
program. If this time interval expires before data has been
successfully transmitted, control will also be returned to your
program. You have no way you can distinguish between the two
return causes.

Please note that, if you set a zero linger time, the connection will not
be orderly closed but aborted, resulting in a RESET segment being sent to
the connection partner instead of a normal close sequence.

Also note that, if the socket is in non-blocking mode, the close call is
treated as if no linger option was set.

5.10 Blocking, Non-blocking and Asynchronous Socket Calls

The default mode of a socket call is blocking mode. All IBM TCP/IP for
MVS socket APIs also support non-blocking socket calls. Some APIs, in
addition to non-blocking calls, also support asynchronous socket calls.

Blocking Let us first explain the default behavior of a socket
call: the blocking mode. A blocking call will not return
to your program until the event, you requested, has been
completed. 1If, for example, you issue a blocking recwv
call, the call will not return to your program until data
is available from the other socket application. A
blocking accept call will not return to your program until
a client connects to your socket program.

A Beginner's Guide to MVS TCP/IP Socket Programming 82

A Beginner's Guide to MVS TCP/IP Socket Programming

Non-blocking You turn a socket into non-blocking mode via the ioctl
call that specifies a command of FIONBIO and an argument
that is a full-word (4 bytes) with a value of binary one
(F'1'"). Any succeeding socket calls against the involved
socket descriptor will be non-blocking calls.

An alternative method is to use the fentl call with a
command code of binary four (F'4') and an argument with a
value of four (F'4') to turn on non-blocking mode.

Non-blocking calls return to your program immediately with
return information that tells you if the requested event
happened or not. If the requested event did not happen,
the error number is set to EWOULDBLOCK. This error number
means that your call would have blocked if it had been a
blocking call. TIf the call was, for example, a recv call,
your program may implement its own wait logic and reissue
the non-blocking recv call later. By using such a
technique, your program may implement its own timeout
rules and, for example, close the socket if it has not
received any data from the partner program within an
application determined period of time.

A new ioctl call can be used to turn the socket back into
blocking mode with a command of FIONBIO and an argument
that is a full-word with the value zero (F'0').

Please see "Datagram Socket COBOL Client Program" in

topic A.2 for an example of a datagram socket program that
uses non-blocking recvfrom calls in order to implement its
own timeout logic.

Note: The APPC Common Programming Interface for
Communications (CPI-C) also provides so-called
non-blocking calls. These calls, however, actually
provide the more advanced facilities of TCP/IP
asynchronous calls.

Asynchronous Asynchronous calls are available with the Sockets Extended
assembler macro API via the ECB keyword on the EZASMI
macro call and in the IUCV API.

Like non-blocking calls, an asynchronous call also returns
control to your program immediately. But in this case,
there is no need to re-issue the call. When the requested
event has taken place, the event control block that was
specified on the EZASMI macro call is posted by the socket
interface. Your program can either, at regular intervals,
test if the wait bit is still on in the ECB, or it can
issue an MVS WAIT macro call on this ECB or a combination
of ECBs, where the socket call ECB is just one of a number
of events for which the program is waiting.

Table 8 summarizes the actions taken by the socket programming interface
(depending on the blocking or non-blocking state of a socket).

Table 8. Effect of Blocking or Non-blocking Mode

Call Type | Socket State | Blocking | Non-Blocki
| | |
read type calls | Input is available | Immediate return | Immediate
A Beginner's Guide to MVS TCP/IP Socket Programming 83

A Beginner's Guide to MVS TCP/IP Socket Programming

Immediate
EWOULDBLOC
(select e:

No input is available Wait for input

write type calls Output buffers available Immediate return Immediate

Immediate
EWOULDBLOC
(select e:

No output buffers available Wait for output buffers

accept call New connection queued Immediate return Immediate

Immediate
EWOULDBLOC
(select e:

No connections queued Wait for new connection

Immediate
EINPROGRESYS
(select e:

connect call Wait

Unless you are using the Sockets Extended assembler macro interface with
an APITYPE of three on the initapi call, you are only allowed to have one
outstanding socket call at any one time. The IUCV API also supports an
APITYPE of three. The way you test pending activity on a number of
sockets in a non-APITYPE three program is by using the select call. You
pass a list of socket descriptors that you want to test for activity to
the select call. You specify per socket descriptor what type of activity
you want to test for:

Pending data to read
Ready for new write

Any exception conditions

The select call can itself be blocking, non-blocking or, for the Sockets
Extended assembler macro API or the IUCV API, asynchronous. If the call
is blocking and none of the socket descriptors that are included in the

list passed to the select call have had any activity, the call will not

return to your program until one of them has activity, or until a timer

value you pass on the select call expires.

In an Sockets Extended assembler macro program, you can use the
asynchronous mode to control your own wait logic, where your program waits
either for socket activity or some other events. A server program will
typically have to wait for either socket activity or some operator command
to shut it down. An Sockets Extended assembler macro program may wait on
a list of two ECBs, where the first is the asynchronous select ECB, and
the other one is an MVS modify command ECB (a CIB ECB).

A C-socket program may use the selectex call to include an external event
in the list of events to wait for. This external event is typically an
MVS modify command ECB.

Sockets Extended assembler macro APITYPE three programs will not be
discussed further in this book. For more information on APITYPE three,
please see Chapter 8 in IBM TCP/IP for MVS: Application Programming
Interface Reference, SC31-7187. The information in the referenced chapter

A Beginner's Guide to MVS TCP/IP Socket Programming 84

A Beginner's Guide to MVS TCP/IP Socket Programming

about APITYPE three also applies to Sockets Extended assembler macro
programs.

5.11 Socket Programs and MVS Security

There are two aspects of security that we will include in the following
discussion:

1. User or client authentication: Do we know the user and is the user who
he/she claims to be?

2. Resource access authorization: Is the user allowed to use a specific
resource or perform a specific function in MVS?

Unlike SNA LU 6.2, where user authentication can be made part of the
conversation initiation, the TCP/IP transport protocol layers do not
include any function that handles these aspects for us. If such functions
are required, we must implement them in the socket applications and in the
application protocol.

The following guidelines are related to socket programs running in native
MVS address spaces. Both IMS sockets and CICS sockets include a security
exit, you can use to authenticate client users that want to start IMS or
CICS transactions via the IMS or CICS listener programs.

5.11.1 User or Client Authentication
5.11.2 Authorizing Access to MVS Resources

5.11.1 User or Client Authentication

In MVS we normally verify the authenticity of a user based on a user ID
and a password that is passed to the MVS Security Access Facility (SAF)
interface.

The client process will have to request the following information from the
user:

MVS user ID

MVS password

Optionally MVS group
Optionally new MVS password

The application protocol must be designed so the client is able to pass
the requested information to the server process, which must invoke the
proper MVS functions to authenticate the user and return a positive or
negative response to the client. Your application protocol should allow
for a response from the server that tells the client user if the password
has expired. The client process should allow the user to repeat the
sign-on dialog enabling the user to type in a new password in addition to
the previously entered user ID and current password.

In order to authenticate the user, the MVS program must use an authorized
function in MVS: the RACROUTE REQUEST=VERIFY function. This function can
only be used from an MVS process that runs in an authorized state. We
will not recommend that you allow your server programs to run in an
authorized MVS state, so our suggestion is to develop a user SVC routine,
where you package the user authentication function into one SVC routine,
which you invoke from your non-authorized server processes via the

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

designated SVC number.

Please see "TPIRACE Interface to RACROUTE REQUEST=VERIFY User SVC" in
topic G.6 for a sample callable routine that can be used from any
high-level language program, and_"User SVC for RACROUTE REQUEST=VERTIFY" in
topic G.7 for a sample type 4 user SVC. In our implementation, we have
added a check in the SVC code to see if the address space user of the
calling program is authorized to use the SVC call. We have implemented
this check to avoid giving all the programs in MVS access to the functions
of the user SVC.

If you define your servers as resources in the RACF APPL resource class
and permit your selected client users to use the individual APPL
resources, you can add the server application name on the RACROUTE
REQUEST=VERIFY call in order to decide if this particular user is or is
not authorized to use this particular server.

As this authentication is done by the application code in the server, it
is important to emphasize that an ill-behaving server can ignore the
authentication return codes and continue processing the socket client
request even if the user is unknown or not authorized to use the server
program. You must ensure proper protection of the libraries where your
server programs reside, in order to avoid having a healthy server program
replaced by an ill-behaving replica.

Please see "Sample Stream Socket COBOL Server" in topic B.1l for a sample
iterative server that authenticates each client user.

If you develop your server programs in C, you may optionally use the
Kerberos services to authenticate your client users. But if you want to
let the server issue further authorization requests in order to see if the
client user may access specific MVS resources, like MVS data sets, you
need an MVS user ID in addition to the Kerberos authentication.

5.11.2 Authorizing Access to MVS Resources

When you issue the RACROUTE REQUEST=VERIFY, an accessor environment
element (ACEE) is constructed and a pointer to the ACEE is placed in the
TCBSENV field in the current task control block (TCB).

If your server program opens an MVS data set, normal MVS authorization
will be performed based on the ACEE pointed to by TCBSENV.

If your server program opens an MVS data set during initialization, before
any clients have connected, the authorization will be done based on the
address space security environment. The address space runs under the user
ID of the batch job, or the started task user ID of a started task. The
address space ACEE is pointed to by the ASXBSENV field in the address
space control block extension.

You can extend the access authorization to each individual user by a
RACROUTE REQUEST=AUTH call. Under normal circumstances, your program does
not have to run in an MVS authorized state in order to issue RACROUTE
REQUEST=AUTH calls.

You are not limited to authorizing data set access. You can issue
RACROUTE REQUEST=AUTH calls for any RACF defined resource.

Please see "TPTIAUTH Issue RACROUTE REQUEST=AUTH for FACILITY Class" in
topic G.8 for a sample callable routine that can be called from any
high-level language program. The routine will issue an RACROUTE

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

REQUEST=AUTH call for the FACILITY class resource name passed to the
routine by the calling program.

6.0 Chapter 6. Native MVS Concurrent Server Program

In this chapter we will guide you through the development of a concurrent
server in the native MVS environment. Our sample concurrent server uses
MVS subtasking and is implemented in assembler using the Sockets Extended
assembler macro programming interface.

O
—

oY O[O [oY [
[(G211 T=N GV |\S)

Concurrent Servers in the Native MVS Environment
MVS Subtasking Considerations

Program Structure

Initializing the Concurrent Server Program
Select Processing

Accepting Connection Requests from Clients

6.1 Concurrent Servers in the Native MVS Environment

The concurrent server is somewhat more complicated to implement. You have

to split your logic into a main program and a child program. In addition
to this split of your logic, you have to include logic to manage the
different processes, which makes up your application.

In a UNIX based environment, you would implement such logic by means of
the UNIX fork call. This call is not available in a traditional MVS
environment, so you have to use some other facilities, which we will
describe in the following sections of this book.

In an OpenEdition/MVS environment, the fork function is implemented using
APPC/MVS to schedule and initiate a child process in another MVS address
space, than the address space in which the original process is executing.

For the MVS address space examples presented in this book, we use the more

traditional MVS subtasking facilities, where the main process and child
processes operate as tasks within the same address space.

You can implement your concurrent server in both an IMS, a CICS and in a
traditional MVS address space environment; but unlike the implementation
of an iterative server, the implementation of a concurrent server differs
between the environments. In this chapter, we will discus the
implementation of a concurrent server in an MVS address space, while we
will return to the IMS and CICS concurrent server implementation in
Chapter 9, "IMS Sockets" in topic 9.0 and Chapter 10, "CICS Sockets" in
topic 10.0.

For the sake of simplicity, we will again limit the scope of our
applications to the AF_INET addressing family and stream sockets.

If you are going to implement a high-performance server application that
creates or accesses MVS resources of various kind, especially MVS data

sets, you will most likely implement your server as a concurrent server in

an MVS address space. The address space can be either TSO, batch or
started task.

In order to implement concurrency in an MVS address space, you will have
to use MVS multitasking facilities, which limits your available
programming interfaces to Sockets Extended assembler macro programming
interface or C sockets. You may also use the IUCV assembler programming

A Beginner's Guide to MVS TCP/IP Socket Programming

87

A Beginner's Guide to MVS TCP/IP Socket Programming

interface, but we see no real reason for doing so when you have the
Sockets Extended assembler macro interface available.

For the Sockets Extended assembler macro interface, you can use standard
MVS subtasking facilities by means of ATTACH and DETACH assembler macros.

If you use C sockets, you can use the subtasking facilities, which are
part of the IBM implementation of C in an MVS environment.

We will use Sockets Extended assembler macro examples to illustrate the
implementation of a concurrent server in an MVS address space environment.

6.2 MVS Subtasking Considerations

The fact that you use multiple tasks in an address space is the cause of
some extra considerations, which you must take into account, when you
design your application. These considerations apply equally to assembler
programming and high-level languages that support subtasking.

When you use multiple tasks in an address space, your tasks may be
concurrently dispatched on different processors if you execute your
application on an n-way system. Two or more tasks may execute in
parallel, one perhaps passing the other.

O
()

.1 Access to Shared Storage Areas
Data Set Access

Task and Workload Management
Security Considerations
Reentrant Code

(o
N
N

(o
N
o8]

O
()
[~

(o
N
@]

6.2.1 Access to Shared Storage Areas

If two tasks access the same storage area inside your address space, you

must impose full control over the use of this storage area. If the
storage area is a read-only area from which your tasks just fetch static
information, there is no need for special attention. If the storage area

is used to pass parameters between the tasks, you must ensure that only
one task at a time is able to modify the contents of the storage area, and
you must ensure that the task that is going to use the information in the
storage area reads the information before it is modified by a third task.
In other words, you have to serialize access to the shared resource (the
storage area).

In an MVS environment you can do so via MVS latching services or the more
traditional enqueue and dequeue system calls. In assembler you use the
ENQ and DEQ macros.

ENO DEQ
Task 1 > > >

Task 2 > e e > >

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

ENOQ DEQ

Time ticks: tl t2 t3 t4

Figure 36. Serialize Access to a Shared Storage Area

1. At time t1, task 1 issues a serialize request by means of an enqueue
call. On the enqueue call it passes two character fields that
uniquely identifies the resource in question. What the value of these
two fields are does not really matter; what matters is that other
tasks use exactly the same values when they want to access this
storage area. As no other task has issued an enqueue for the resource
in question, taskl gets access to it and goes on making the required
modifications in the storage area.

2. At time t2, task 2 wants to access the same storage area and issues an
enqueue call with the same resource names as task 1. Because task 1
already has enqueued, task 2 is placed in a wait and stays there until
task 1 releases the resource.

3. At time t3, task 1 releases the resource with a dequeue system call,
and task 2 is immediately taken out of its wait and can now begin to
make its modifications to the shared storage area.

4. At time t4, task 2 has finished updating the shared storage area and
releases the resource with a dequeue system call.

In the above example we assumed that we only needed to serialize access
when the tasks wanted to update information in the shared storage area.
There are situations where this is not sufficient. If you use a storage
area to pass parameters to some kind of service task inside your address
space, you must ensure that the service task has read the information and
acted accordingly before another task in your address space tries to pass
information to the service task in the same storage area.

Let us, for example, imagine that we have a service task, to which other
tasks pass information that has to be written to some kind of logging or
trace sysout file. In our design we have a common storage area, which is
accessible from all tasks within our address space. We use fields in this
common storage to pass parameters to the service task in order for it to
print information on sysout.

ENQ
Task 2 > e e e e e e e e e e e e e >
POST
service task
and
ENQ WAIT DEQ
Task 1 > > e e e e e > >
[
\AY%
| Storage|
|Area |

A Beginner's Guide to MVS TCP/IP Socket Programming

89

A Beginner's Guide to MVS TCP/IP Socket Programming

Service task > e

WAIT for new
request

Time ticks: tl t2 t3 t4 t5

Figure 37. Synchronize Use of a Common Service Task

1. At time tl1, task 1 gets access both to the common storage area and to
implicitly use the service task in question.

2. At time t2, task 2 also has a need to use the services of our service
task, but it is placed into a wait, because task 1 already has the
resource.

3. At time t3, task 1 has finished placing values into the common storage
area and signals the service task to start processing it. This is
done via a POST system call. Immediately following this call, task 1
enters a wait, where it waits until the service task has completed its
processing. The service task starts, processes the data in the common
storage and prints, for example, a line or two to a sysout file.

4. At time t4, the service task has finished its work and signals back to
task 1 that task 1 can continue, while it enters a new wait for a new
work request.

5. At time t5, task 1 releases the lock it obtained at time t1, and task
2 is immediately taken out of its wait and now starts filling in its
values into the common storage area before posting the same service
task to process a new request.

The above technique is relatively simple. It can be made much more
complicated and also more efficient by using internal request queues where
the requesting task does not need to wait for the service task to complete
the request. You can experiment with such implementations, but they are
outside the scope of this book.

When you use the enqueue system call, you have an option to test if a
resource is available or not. In some situations, this might be handy if
you do not want to enter a wait at some particular point in your
processing but want to take some other action if the resource is not
available.

6.2.2 Data Set Access

When you access MVS data sets in a multitasking environment, you must
observe some general rules as follows:

1. A given DD-name can only be used by one open Data Control Block (DCB)
at a time. If you need to have more DCBs open for the same data set,
you have to use different DD-names. It can only be recommended for

read access.

2. Only the task that opens a DCB can issue read and write requests using

A Beginner's Guide to MVS TCP/IP Socket Programming

90

A Beginner's Guide to MVS TCP/IP Socket Programming

that DCB. You cannot let your main task open a DCB and then have your
subtasks issue read or write requests to that DCB. One way to deal
with this is the technique we described above with a special services
task that opens a DCB to a particular data set. Other tasks then
issue requests to this service task for access to the data set. Such
a service task is in general called a Data Services Task (DST). One
very common implementation of a DST is the example we used above,
which was to print out log and trace information to a sysout file.

3. A last reminder for data set access is that authorization checking for
access to a data set is done when the data set is opened and not for
each read or write request. If you develop a multitasking server,
where you establish task level security environments for each
transaction entering your server, you have to consider how you will
authorize access to the information in a data set owned by a DST. You
can, of course, open and close the data set for each transaction, but
that may prove to be unacceptable from a performance point of view.

It depends on the nature of your application.

6.2.3 Task and Workload Management

When your program is started by MVS, it is executing as the main task of
the address space in which it was started.

In the examples we use in this book, we use the main task as the main
process of our concurrent server implementation. The child processes will
then be started as subtasks of the main task.

You have generally two ways to manage your child processes as: follows:

1. Every time a connection request arrives, you start a new subtask,
which processes one connection and then terminates.

2. During initialization, the main task starts a number of subtasks.
Each subtask initializes and enters a wait-for-work status. When a
connection request arrives, the main process selects the first subtask
that is waiting for work and schedules the connection to that subtask.
The subtask processes the connection and, when done, enters a new
wait-for-work status.

The last approach is the most efficient because we only indulge the
overhead of creating new tasks once during server startup. It is also a
bit more complicated to implement than the first approach:

You must decide on the number of server subtasks you start during
initialization. If more connection requests arrive, than you have
server subtasks available, you must include code to deal with that
situation: either reject a connection or dynamically increase the
number of subtasks in your concurrent server address space. If you
include logic to increase subtasks dynamically during peak hours, you
might also include logic to decrease number of subtasks dynamically
during low-activity hours. This is what we term workload management.

The subtasks must be reusable and include logic to enter wait-for-work
status and be able to process connection requests serially.

The main process must be able to deal with situations where a server
subtask abends or terminates because of some other reason. Should the

subtask be reinstated, and how do you avoid reinstate—-abend loops?

To implement what we call graceful shutdown, you also have to

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

implement a technique for signalling to the subtasks that they should
terminate in an orderly manner. A simple technique is to post the
subtask from the main process with a return code of zero for work and
some other return code value for termination.

In the concurrent MVS server example you find in this book, we used the
technique with a pool of subtasks that waited for work. We did not
implement a dynamic increase of subtasks, but chose to send a negative
reply back to the requester if no server subtasks were available.

6.2.4 Security Considerations

When you start your server address space in MVS, a security environment is
established for the address space based on the user ID of your batch job
or TSO user or based on the started task user ID associated with your
started task procedure name in RACF started task table (ICHRINO3).

If you do nothing else, all tasks in your address space will execute under
the security environment of the address space. Access to MVS resources
during processing of client requests will be authorized based on the MVS
address space security environment.

For some applications this may be sufficient. For others it is not.

You are able to work with task level security environments where each task
in an address space may have a different security environment. You build
and delete task level security environments with the RACROUTE
REQUEST=VERIFY function in MVS. To use this, your task must run in an
authorized state, so it is a function you must implement carefully in
order not to jeopardize security in your environment. See "Socket
Programs and MVS Securityv" in topic 5.11 for a general discussion on
socket programs and security considerations.

6.2.5 Reentrant Code

It is not a requirement to develop reentrant code, but it is a more
efficient use of main storage resources to do it. If you start 20
subtasks all using the same program, the program will be loaded into
virtual storage in 20 copies if it is not reentrant but only in one copy
if it is reentrant.

For most high-level languages, it is often just a matter of an option on
the compile step.

If you develop your program in assembler, it might be somewhat more
complicated; however, good use of macros for program initiation and
termination may solve parts of the burden.

6.3 Program Structure

Figure 38 shows the basic logic in a multitasking concurrent server.

Server Main Process
| |
| Initapi 1 |

A Beginner's Guide to MVS TCP/IP Socket Programming 92

A Beginner's Guide to MVS TCP/IP Socket Programming

Start subtasks 2
Obtain a socket
Bind socket

| |
| |
| |
| Listen |
| Do forever |
| Select 3 |
4 | If new connection |
| >Accept
| | Find free subtask |
| 5 | Givesocket | 6
| | | Post subtask |
| [If exception |
Client process | | | Close socket | |
[End				
Connect						
	7					
Send request__						
	8					
[Read reply<____	_____		Server subtask			
[9						
Close socket<_	___				Initapi	
[11 I 1	Do forever					
N Wait for work< [
[>Takesocket				
[1	___ >Read client request				
[Send client reply					
	>Close socket					
End						
Figure 38. Concurrent Server in an MVS Address Space
The sequence numbers in the following sections all refer to the
corresponding numbers in Figure 38.
Please refer to Appendix H, "Sample MVS Concurrent Server" in topic H.O

for the complete sample code of an MVS concurrent server.

6.4 Initializing the Concurrent Server Program

1 The server must as always start out with an initapi call before it
uses any other socket calls.

*

* Initialize socket API
*

EZASMI TYPE=INITAPI, *Tnitialize socket interface
MAXSOC=TPIMMAXS, *So many concurrent sockets
SUBTASK=TPIMTCBE, *My TCB address in EBCDIC
IDENT=IDENTSTR, *TCP/IP AS name and my AS name
MAXSNO=TPIMMAXD, *Max. no of socket descriptors

ERRNO=ERRNO,
RETCODE=RETCODE,
ERROR=EZAERROR

ICM R15,15, RETCODE *Initapi OK
BM EZAERROR *— No.
*
IDENTSTR DS OF *INITAPI: Ident structure

A Beginner's Guide to MVS TCP/IP Socket Programming

ool oo e Ne!

93

A Beginner's Guide to MVS TCP/IP Socket Programming

IDENTTCP DC CL8'T18ATCP' *TCP/IP Address space name
IDENTJOB DC CL8' ' *My Address space name

*

TPIMTCBE DC CL8' ' *TCB Address in EBCDIC - task ID
*

TPIMMAXS DC AL2 (50) *Maximum number of sockets
TPIMMAXD DC AL4 (50) *Maximum descriptor number

*

ERRNO DC A(0) *Errorno from EZASMI

RETCODE DC A(0) *Returncode from EZASMI

Jobname and task ID is initialized to address space name and EBCDIC
representation of TCB address before the call is issued.

2 During initialization the server main process attaches a number of

subtasks. How you do this, what program you start and what parameters you

pass is, of course, application dependent. In our sample server the
subtask program is called TPISERV. For each subtask, the main process
maintains a control block that we called TPISCB (Subtask Control Block).
A pointer to this control block is passed to the subtask program.

* *
* Attach a subtask *
* *
LA R3, TPISCB *—> Subtask Control Block
LA R8, TPISTECB *—> Term. ECB
ATTACH EP=TPISERV, *Server subtask main module
PARAM=((R3)), *Pass TPISCB as only parameter
ECB=(R8) *Termination ECB
ST R1, TPISTCB *—> TCB of subtask

When the subtask terminates, either because of an abend or because of
normal termination, the Event Control Block (ECB) at label TPISTECB is
posted by MVS.

During subtask initialization, the subtasks issue initapi calls, where
they identify themselves with the same address space name as the main
process and with an EBCDIC representation of their TCB addresses.

* *
* Initialize socket API in subtask with passed values *
* *
MVC IAPITCP, TPIMTCPI *TCP/IP address space name
MVC IAPIAS, TPIMCNAM *Our address space name
EZASMI TYPE=INITAPI, *Initialize socket API
MAXSOC=IAPISOCC, *This many sockets
SUBTASK=TPISTCBE, *My TCB address in EBCDIC
IDENT=IAPIIDEN, *TCP/IP AS name and my AS name
MAXSNO=IAPISNO, *This many socket descriptors
ERRNO=ERRNO,

RETCODE=RETCODE

ICM R15,15,RETCODE *Did we do well ?
BM EZAERROR *~ No, deal with it.
*
IAPIIDEN DS oc
IAPITCP DC CL8' ' *TCP/IP Address space name
IAPIAS DC CL8' ' *Child process address space name
*
TPISTCBE DC CL8' ' *Child process TCB address in EBCDIC
*
IAPISNO DC AL4(10) *Max socket descriptors
IAPISOCC DC AL2(10) *Max sockets

A Beginner's Guide to MVS TCP/IP Socket Programming

ool e e o Ne]

94

A Beginner's Guide to MVS TCP/IP Socket Programming

*

ERRNO DC A(0) *Errorno from EZASMI
RETCODE DC A(0) *Returncode from EZASMI

The subtasks then enter a wait for work status, waiting for the main
process to pass work.

The server main process now issues the same series of socket calls as the
iterative server to obtain a socket, bind it to the server port number and
open it in passive mode via a listen call.

6.5 Select Processing

3 When all initialization has been done, and the server main process is

ready to enter normal work, it builds a bit mask for a select call. The
select call is used to test pending activity on a list of socket
descriptors owned by this process. Before you issue the select call, you

must construct three bit strings representing the sockets you want to test
for as follows:

Pending read activity
Pending write activity
Pending exceptional activity

The format of the bit strings is a bit awkward for an assembler programmer
who is used to bit strings starting off from the left. These do not.

The first rule is that the length of a bit string is always expressed as a
number of full-words. If the highest socket descriptor you want to test
is socket descriptor number three, you have to pass a 4 byte bit string as
this is the minimum length. If the highest number is 32, you must pass 8
bytes (2 full-words).

The number of full-words in each select mask can be calculated as

INT (number of socket descriptors / 32) + 1

Let us look at the first full-word you pass in a bit string:

Bit nbr: ! 0 1 2 3 4 5 6 17

Byte 0: ! x x x x X X X X

SD nbr: ! 31 30 29 28 27 26 25 24
!

Byte 1: ! x x x X X X X X

Sd nbr: ! 23 22 21 20 19 18 17 16
!

Byte 2: ! x x x x X X X X

SD nbr: ! 15 14 13 12 11 10 9 8
!

Byte 3: ! x x x x X X X X

Sd nbr: ! 7 6 5 4 3 2 1 0

We use standard assembler numbering notation; the left most bit or byte is
relative zero.

If you want to test socket descriptor number 5 for pending read activity,
you raise bit2 in byte 3 of the first full-word (X'00000020"'"). TIf you
want to test both socket descriptor 4 and 5, you raise both bit2 and bit3
in byte3 of the first full-word (X'00000030").

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

If you want to test socket descriptor number 32, you must pass two
full-words, where the numbering scheme for the second full-word resembles
that of the first. Socket descriptor number 32 is bit7 in byte3 of the
second full-word. If you wanted to test socket descriptors 5 and 32, you
would pass two full-words with the following content:
X'0000002000000001".

The bits in the second full-word represents the following socket
descriptor numbers:

Bit nbr: ! 0 1 2 3 4 5 6 17

Byte 4: ! x x x x X X X X

SD nbr: ! 63 62 61 60 59 58 57 56
]

Byte 5: ! x x =x x X X X X

Sd nbr: ! 55 54 53 52 51 50 49 48
]

Byte 6: !' x x x x X X X X

SD nbr: ! 47 46 45 44 43 42 41 40
]

Byte 7: !' x x x x X X X X

Sd nbr: ! 39 38 37 36 35 34 33 32

To set and test these bits in an easy way, we developed the following
assembler macro:

MACRO
TPIMASK &TYPE, §MASK=, &SD=

Lk kkkkkkkkkkkhkkhkkhkhkkkhkkhkhkhkhhkhkhhkhhkhhkhhkhkhhkhhkhhkhhhkhhkhhkhhkhkhkhhkhkhkkhkhhhkhkkk
.* TYPE is either: *
L * TEST for testing a bit *
. * Follow the TPIMASK TEST invocation by *
¥ a Branch Equal for bit on, and a *
L* a Branch Not Equal for bit off. *
. * SET for setting a bit *
.* MASK Bit mask area *
.* SD A halfword containing socket descriptor *
Lk kkkkkkkkkkkhkkhkkhkkkkhkkhkhkkhhkhkhhkhhkhhkhhkhkhhhhkhhkhkhhkhhkhhkhhkhkhhhkhkhkkkhkkkhkhkkk

SR R14,R14 *Nullify

AIF ('&SD'(1,1) EQ '(') .SDREG

LH R15, &SD *Socket descriptor

AGO .SDOK
.SDREG ANOP

LR R15, &SD *Socket descriptor
.SDOK ANOP

D R14,=A(32) *Divide by 32

SLL R15,2 *Multiply offset with word length

AIF ('&MASK' (1,1) EQ ' (') .MASKREG

LA R1, 8MASK *Here mask starts

AGO .MASKOK
.MASKREG ANOP

LR R1, éMASK *Here mask starts
.MASKOK ANOP
AR R15,R1 *Here our word starts
LA R1,1 *Rightmost bit on
SLL R1,0(R14) *Shift left rest from division
(o] R1, 0 (R15) *Or bits from mask
ATF ('&TYPE' EQ 'SET') .DOSET
(o} R1, 0 (R15) *If equal, bit was on
MEXIT

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

.DOSET ANOP
ST R1, 0 (R15) *New mask
MEND

If you develop your program in another programming language, you may be
able to benefit from the EZACIC06 routine, which is provided as part of
IBM TCP/IP for MVS. This routine translates between a character string
mask (one byte per flag) and a bit string mask (one bit per flag). If you
use the select call in COBOL, you will find EZACIC06 very useful.

You build the three bit strings for the socket descriptors you want to
test, and the select call passes back three corresponding bit strings with
bits raised for those of the tested socket descriptors that have pending
activity.

* *
* Test for socket descriptor activity via the SELECT call *
* *
EZASMI TYPE=SELECT, *Select call C
MAXSOC=TPIMMAXD, *Max. this many descr. to test Cc
TIMEOUT=SELTIMEO, *One hour timeout value (o}
RSNDMSK=RSNDMASK, *Read mask C
RRETMSK=RRETMASK, *Returned read mask C
WSNDMSK=WSNDMASK, *Write mask C
WRETMSK=WRETMASK, *Returned write mask (o}
ESNDMSK=ESNDMASK, *Exception mask Cc
ERETMSK=ERETMASK, *Returned exception mask C
ECB=ECBSELE, *Post this ECB when activity occurs C
ERRNO=ERRNO, *— ECB points to an ECB plus 100 (o]
RETCODE=RETCODE, *— bytes of workarea for socket C
ERROR=EZAERROR *— interface to use.
ICM R2,15,RETCODE *Tf Retcode < zero it is
BM EZAERROR *— an error
*
SELMASKS DS OF
RSNDMASK DC XL8'00000000' *Read mask
RRETMASK DC XL8'00000000' *Returned read mask
WSNDMASK DC XL8'00000000' *Write mask
WRETMASK DC XL8'00000000' *Returned write mask
ESNDMASK DC XL8'00000000' *Exception mask
ERETMASK DC XL8'00000000' *Returned exception mask
*
NOSELCD DC A(0) *Keep track of selected sd's
SELTIMEO DC A(3600,0) *One hour timeout
ECBSELE DC A(0) *Select ECB
DC 100x'00' *Required by EZASMI
*
TPIMMAXD DC AL4 (50) *Maximum descriptor number
*
ERRNO DC A(0) *Errorno from EZASMI
RETCODE DC A(0) *Returncode from EZASMI

In the above select call we use the asynchronous facilities of the Sockets
Extended assembler macro interface. By placing an ECB parameter on the
EZASMTI macro call, the select call will not block our process; we will
receive control immediately even if none of the specified socket
descriptors had activity. You can use this technique, if you want to
enter a wait, waiting for a series of events of which the completion of a
select call is just one. In our sample application, we placed the main
process into a wait from where it would return if any of the following

A Beginner's Guide to MVS TCP/IP Socket Programming

97

A Beginner's Guide to MVS TCP/IP Socket Programming

events occurred:

1. Socket descriptor activity occurred and the select call was posted.
2. One of our subtasks terminated unexpectedly.
3. The MVS operator issued a Modify command to stop the server.

If the reason for exiting the wait is socket activity, you must
synchronize your task with the socket interface by issuing an EZASMI
Synchronize call.

* *
* Synchronize after asynchronous SELECT call *
* *
EZASMI TYPE=SYNC, *Synchronize function Cc
ECB=ECBSELE, *Select ECB plus 100 bytes workarea C
ERRNO=ERRNO, C
RETCODE=RETCODE, C
ERROR=EZAERROR
ICM R15,15, RETCODE *Was everything OK
BM EZAERROR *— No, some error
ST R15, NOSELCD *Number of sd's selected

The areas pointed to by the return mask keywords on the previous select
call is not filled in with the returned bit masks until you issue the
synchronize call.

The number of socket descriptors with pending activity is returned in the
RETCODE field. You must process all selected socket descriptors before
you issue a new select call. A selected socket descriptor will only be
selected once.

When a connection request is pending on the socket for which the main
process issued the listen call, it will be reported as a pending read.

When the main process has given a socket, and the subtask has taken the
socket, the main process socket descriptor is selected with an exception
condition. The main process is expected to close the socket descriptor
when this happens.

6.6 Accepting Connection Requests from Clients

4 TIf the listener socket was selected with a pending read, a new
connection request has arrived, and the following socket call must be an
accept:

* *
* ACCEPT the connection from a client *
* *
EZASMI TYPE=ACCEPT, *Accept new connection Cc
S=TPIMSNO, *On listener socket descriptor Cc
NAME=SOCSTRUC, *Returned client socket structure (o}
ERRNO=ERRNO, C
RETCODE=RETCODE, C

ERROR=EZAERROR

ICM R15,15,RETCODE *OK?

BM EZAERROR *— No, error indicated

STH R15, NEWSOC *Returned new socket descriptor
*
SOCSTRUC DS OF *ACCEPT Socket address structure
SSTRFAM DC AL2 (2) *TCP/IP Addressing family
SSTRPORT DC AL2 (0) *Port number

A Beginner's Guide to MVS TCP/IP Socket Programming 98

A Beginner's Guide to MVS TCP/IP Socket Programming

SSTRADDR DC AL4 (0)
SSTRRESV DC 8X'00"'
*

TPIMSNO DC AL2 (0)
*

NEWSOC DC AL2 (0)
*

ERRNO DC A(0)
RETCODE DC A(0)

*IP Address
*Reserved

*Listen socket descriptor
*Returned socket descriptor

*Errorno from EZASMI
*Returncode from EZASMI

The accept call returns a new socket descriptor representing the
connection with the client. The original listen socket descriptor is

available for a new select call.

6.6.1 Give Socket to Subtask
6.6.2

6.6.1 Give Socket to Subtask

The socket represented by the new socket descriptor has to be passed on

Take Socket from Main Process

an available subtask. What technique the main process uses to find an
available subtask is not so important. Let us assume that the main

process has found an available subtask to which it gives the socket via

givesocket call.:

*

* Give socket to subtask
*

MVC CLNNAME, TPIMCNAM
MVC CLNTASK, TPISTCBE
EZASMI TYPE=GIVESOCKET,
S=NEWSOC,
CLIENT=CLNSTRUC,
ERRNO=ERRNO,
RETCODE=RETCODE,
ERROR=EZAERROR
ICM R15,15,RETCODE

BM EZAERROR
*

CLNSTRUC DS OF
CLNFAM DC A(2)
CLNNAME DC cL8'
CLNTASK DC cL8'

CLNRESV DC XL20'00'
*

NEWSOC DC AL2 (0)
*

ERRNO DC A(0)
RETCODE DC A(0)

If you are programming in C, for example,

the full client ID of the subtask.

field as eight blanks on the givesocket call,
within your own address space can take the socket.
which you pass the socket descriptor number will actually take it,

is not a big exposure.

After you have issued the givesocket call,

*Our Client ID Address Space Name
*Give to this subtask

*Givesocket

*Give this socket descriptor

*— to a specific child process

*OK ?
*— No, tell about it.

*GIVESOCKET: Client structure
*TCP/IP Adressing family

*Address space name of target
*Task ID of child process subtask
*Reserved

*Socket descriptor from Accept

*Errorno from EZASMI
*Returncode from EZASMI

you may not be able to decide

to

(ool e oS!

In that case, you can pass the task ID

the given socket descriptor in the exception select mask on the next

select call.

A Beginner's Guide to MVS TCP/IP Socket Programming

which means that any task
But only the task to
so it

you must remember to include

99

A Beginner's Guide to MVS TCP/IP Socket Programming

Your main process is now ready to wake up the selected subtask via a POST

system call.

If there were no more sockets selected on the previous select call, your
main process can now build a new set of select masks and issue a new

select call.

6.6.2 Take Socket from Main Process

6 The subtask is brought back to life as a result of the POST system

call issued from the main process,
call to receive the socket,

*

and it immediately issues a takesocket
which was passed from the main process.

* Take socket from main process

*

EZASMI TYPE=TAKESOCKET,

ICM
BM
STH
*
TPIMCLNI DS
TPIMCDOM DC
TPIMCNAM DC
TPIMCTSK DC
DC
*
TPISSOD DC
TPISNSOD DC

In order to take a socket,

CLIENT=TPIMCLNI,
SOCRECV=TPISSOD,
ERRNO=ERRNO,
RETCODE=RETCODE,
ERROR=EZAERROR
R15, 15, RETCODE
EZAERROR

R15, TPISNSOD

oc
A(0)

cL8' '
cL8' '
20X'00"

AL2 (0)
AL2 (0)

*Takesocket
*Main task client id structure
*Main task socket descriptor

(ool e oS!

*Did we do well ?
*— No, deal with it.
*Server subtask socket descr.no

*Main task client id

*Domain: AF-INET

*Our address space name

*Main task TCB address in EBCDIC
*Reserved (part of clientid)

*Parent socket descr. no.
*Subtask socket descr. no.

the subtask must have knowledge of the client

ID of the task that gave the socket and the socket descriptor used by that
task. These values must be passed to the subtask from the main process
before a takesocket call can be issued.

On the takesocket call,
gave the socket,

you specify the full client ID of the process that

and you specify the socket descriptor number used by the
process that gave the socket.

A new socket descriptor number to be used by the subtask is returned in
the RETCODE field if the takesocket call is successful.

As soon as your subtask has taken the socket, the main process will be
posted in its pending select with a pending exception activity, which
means that the main process must close its socket descriptor.

From here on,

processing is quite trivial.

7 The client sends its request to the subtask, which processes it and
sends back a reply 8

9 Finally the client process and the server subtask close their sockets,
and the server subtask enters a new wait for work status.

A Beginner's Guide to MVS TCP/IP Socket Programming

100

A Beginner's Guide to MVS TCP/IP Socket Programming
7.0 Chapter 7. Socket Client Programs

A socket based client program will use a subset of the socket calls we
have discussed so far, plus a few extra,

programs.

As many of the calls apply to both server and client programs,
shown both COBOL and assembler examples of server program socket calls

until now; we will now illustrate the client socket calls with REXX

samples.

From a socket point of view,

in an IMS or CICS environment.
language support. REXX sockets for example,

IMS or CICS environments.

For a sample COBOL based client,

Client" in topic B.2.

For a sample REXX based client,
"TPT REXX Client" in topic H.2.1.

please see

please see

1
—

1 | |
> o N

Closing the Socket

1
(1

7.1 General REXX Subroutine for Socket Calls

In the sample REXX programs we developed,

Terminating the REXX Socket API

there is no difference between a client
program that executes in a normal MVS address space and one that executes
There is a difference in programming
is not supported in either

which are mainly used by client

and we have

"Sample Stream Socket COBOL

"REXX Client" in topic E.1 or

General REXX Subroutine for Socket Calls
Initializing the Socket API
Connecting a Client to a Server

we packaged the actual REXX

socket call into a REXX subroutine in order to enable easy tracing

facilities. 1If we had problems with the socket calls,

the appropriate REXX statements to this one subroutine, and we would

enable trace output for all socket calls.

See M"TPI REXX Client" in topic H.2.1 for a sample REXX that uses this

subroutine with trace points imbedded.

We called the subroutine DoSocket.

/*

/*
/* DoSocket procedure.

/*

/* Do the actual socket call,

and parse the return code.

/* Return rest of string returned from socket call.

/*

/*

DoSocket:
numargs = arg() /*Number of passed args
argstring = '' /*Init arg string

do subix=1 to numargs

/*Build argument string

argstring = argstring||'arg('subix')' /*for the socket call

if subix<numargs then do
argstring = argstring]||',"'

end
end

we could just add

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

/*If not last argument -*/

/*add a comma
/*
/*

A Beginner's Guide to MVS TCP/IP Socket Programming

*/
*/
*/

101

A Beginner's Guide to MVS TCP/IP Socket Programming

msgstat = msg() /*Save message status */
z = msg("OFF") /*Turn messages off */
interpret 'Parse value Socket ('||argstring||') with sockrc sockres'
z = msg(msgstat) /*Restore message status*/
return sockres /*Return socket result */

7.2 Initializing the Socket API

If you use the Sockets Extended programming interfaces, you will have to
issue the initapi call in order to establish your client programs clientID

with the TCP/IP system address space.

In a REXX program you use the initialize call to do this:

/* */
/* Initialize REXX socket interface */
/* */
sockval = DoSocket ('Initialize', 'tpirexxc')

if sockrc <> 0 then do
say 'Socket initialize failed, rc='sockrc
say sockval
exit (sockre)

end

A REXX socket program will get a client ID, where the address space name
is set to the correct address space name and the task ID is set to the
value of the first parameter passed on the initialize call, which in the

above scenario is a text string with the value tpirexxc.

7.2.1 Getclientid

7.2.1 Getclientid

You use the getclientid call to obtain the client ID by which your program

has been identified to the TCP/IP address space.

A getclientid call will in REXX look like:

/* */
/* Get our client ID */
/* */

sockval = DoSocket ('Getclientid')

if sockrc <> 0 then do
say 'Getclientid failed, rc='sockrc
say sockval
exit (sockrce)

end

The client ID is returned as a string. In the above example,
the returned string is:

AF_INET TSOUSER1l tpirexxc

the value of

Domain is AF_INET, address space name is TSO user ID and task ID is the

value that was passed on the initialize call.

7.3 Connecting a Client to a Server

A Beginner's Guide to MVS TCP/IP Socket Programming

102

A Beginner's Guide to MVS TCP/IP Socket Programming

If you know the IP address of the server, you can go on issuing a socket
call followed by a connect call.

If you only know the host name, you will have to resolve the host name
into one or more IP addresses using the gethostbyname call.

/* */
/* Find IP addresses of server host */
/* */

servipaddr = DoSocket ('Gethostbyname', tpiserver)
if sockrc <> 0 then do

say 'Gethostbyname failed, rc='sockrc

say sockval

x=Doclean

exit (sockre)
end

The REXX gethostbyname call returns a list of IP addresses if the host is
a multihomed host. You can parse the REXX string and place the IP
addresses into a REXX stem variable using the following piece of REXX

code:
/* */
/* Parse returned IP address list */
/* */

numips = words (servipaddr)
do i = 1 to numips
sipaddr.i = word(servipaddr, i)
end
sipaddr.0 = numips

When you issue a connect call to an IP address that is currently not
available, your connect call will eventually time out, giving an error

number of 60 (ETIMEDOUT). The socket you used on such a failed connect
call cannot be reused for another connect call. If you try to do it, you
will receive error number 22 (EINVAL). You have to close the socket, and

get a new socket before you reissue the connect call with the next IP
address in the list of IP addresses that were returned by the
gethostbyname call.

The connect call can be placed in a loop that is terminated when either a
connect 1is successful or the list of IP addresses is exhausted.

/* */
/* */
/* Get a socket and try to connect to the server */
/* */
/* If connect fails (ETIMEDOUT), we must close the socket, */
/* get a new one and try to connect to the next IP address */
/* in the list, we received on the gethostbyname call. */
/* */
/* */
i=1

connected = 0
do until (i > sipaddr.0 | connected)
sockdescr = DoSocket ('Socket')
if sockrc <> 0 then do
say 'Socket failed, rc='sockrc
exit (sockrc)
end

A Beginner's Guide to MVS TCP/IP Socket Programming 103

A Beginner's Guide to MVS TCP/IP Socket Programming

name = 'AF_INET '| |tpiport||' '||sipaddr.i
sockval = DoSocket ('Connect', sockdescr, name)
if sockrc = 0 then do
connected =1
end
else do
sockval = DoSocket ('Close', sockdescr)
if sockrc <> 0 then do
say 'Close failed, rc='sockrc
exit (sockre)
end
end
i=1i+1
end
if ,connected then do
say 'Connect failed, rc='sockrc
exit (sockrce)
end

7.3.1 Accessing a Host Entry Structure with EZACICO8

7.3.1 Accessing a Host Entry Structure with EZA CIC08

If you develop your socket program in other programming languages other
than REXX, the gethostbyname call will not return a string with IP
addresses but a pointer to a storage area that is known as a host entry
structure or, for short, a HOSTENT structure. A gethostbyaddress call
will also return a host entry structure to your program.

The host entry structure may be complicated depending on the number of
aliases and IP addresses a given host has.

If you develop your programs in assembler, this structure is quite
straight forward and does not impose any major problems to you. But if
you develop your program in, for example, COBOL, you could have problems
extracting relevant information from this structure because COBOL is not
famous for its pointer manipulation features.

IBM TCP/IP for MVS supplies you with a routine that makes it more simple
to extract information from the host entry structure. The name of this
routine is EZACICOS.

>|Host name X'00'|
Hostentry I I
pointer > |

|name pointer |

I
|Alias list pointer
I
|Family F'2'
I
|Address len F'4'
I

|Address list pointer

Alias list
| |Alias 1 pointer|_>|Alias 1 X'00'|
I [|
| |
|Alias n pointer|_>|Alias n X'00'|
| [|
IF'0’ |
| |

|
| INET address list
| >

A Beginner's Guide to MVS TCP/IP Socket Programming 104

A Beginner's Guide to MVS TCP/IP Socket Programming

| INET addr 1 pointer|_>|INET addr 1|

| INET addr n pointer|_>|INET addr n|

|F'0" |
| |

Figure 39.

Host Entry Structure

The notation X'00' is used to show that the value is a variable length
string that is terminated by a null-byte.

In a COBOL program,

the gethostbyname call and the use of EZACICOS8

followed by a socket call and a connect call could be implemented as

follows:
* *
* Variables used for socket calls in general *
* *
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
* *
* Variables used for the GETHOSTBYNAME Call *
* *
01 soket—gethostbyname pic x(16) value 'GETHOSTBYNAME
01 host—-namelen pic 9(8) Binary Value 5.
01 host—-name pic x(5) Value 'mvsl8'.
01 host-entry-addr pic x(4) Value low-value.
* *
* Variables used for the call to EZACICOS8 *
* *
01 host-alias-seq pic 9(4) Binary Value zero.
01 host—addr-seq pic 9(4) Binary Value zero.
01 host—-name-length pic 9(4) Binary Value zero.
01 host—-name-value pic x(255) Value space.
01 host-alias-count pic 9(4) Binary Value zero.
01 host-alias-length pic 9(4) Binary Value zero.
01 host-alias-value pic x(255) Value space.
01 host-addr-type pic 9(4) Binary Value zero.
01 host-addr-length pic 9(4) Binary Value zero.
01 host-addr-count pic 9(4) Binary Value zero.
01 host-addr-value pic x(4) Value low-value.
01 host-return-code pic s9(8) Binary Value zero.
* *
* Variables used for the CONNECT Call *
* *
01 soket-connect pic x(16) value 'CONNECT
01 server-socket-address.
05 server—afinet pic 9(4) Binary Value 2.
05 server-port pic 9(4) Binary Value 3001.
05 server-ipaddr pic x(4) Value low-value.
05 filler pic x(8) value low-value.
01 connect-status pic 9(4) Binary value zero.
88 connect-done value 1.
* *
* Get IP addresses out of the HOST Entry structure. *

*

A Beginner's Guide to MVS TCP/IP Socket Programming

105

Loop pulling IP addresses out of the host entry structure,
getting a socket and trying to connect to IP address.

A Beginner's Guide to MVS TCP/IP Socket Programming

exhausted or a connect is successful

* % ok * * *

Loop until the returned list of IP addresses is

Move zero to connect-status.

Perform until ((host—addr-count = host-addr-seq and

host—-addr-seq > 0) or
connect-done)

If host-alias-seq > host-alias-count then

subtract 1 from host-alias-seq
end-if
Call 'EZACICO8' using host-entry-addr
host-name-length
host-name-value
host-alias-count
host-alias-seq
host-alias-length
host-alias-value
host-addr-type
host-addr-length
host—-addr-count
host-addr-seq
host-addr-value
host-return-code
If host-return-code < 0 then
— process error -
end-if
Move host-addr-value to server-ipaddr

*

* Get an AF_INET socket to use for connect
*

Call 'EZASOKET' using soket-socket
afinet
soctype—-stream
proto
errno
retcode
If retcode < 0 then
— process error -
end-if
Move retcode to socket-descriptor

*

* Try to connect to iterative server on returned IP address

*

If host-return-code = 0 then
Call 'EZASOKET' using soket-connect
socket-descriptor
server—socket—-address
errno
retcode
If retcode < 0 then
Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode

A Beginner's Guide to MVS TCP/IP Socket Programming

*
*
*

* % F * * *

106

A Beginner's Guide to MVS TCP/IP Socket Programming

If retcode < 0 then
- process error -

end-if
else
move 1 to connect-status
end-if
end-if

end-perform.

if not connect-done then

- process error -
else

— connected to server -
end-if

1 Each call to EZACICO08 will advance the alias sequence and address
sequence numbers. In this context we are only interested in the IP
addresses; so, in order to avoid a retcode -2 from EZACIC08, we reset the
alias sequence to the last alias sequence number if the alias sequence
number exceeds the available alias names.

Please note that EZACICO08 may return the following return code values:
-1 The host entry structure is invalid.

-2 The alias sequence field is invalid (greater than the alias count
field) .

-3 The address sequence field is invalid (greater than the address count
field) .

7.4 Closing the Socket

When your client program has connected to the server, they can exchange
whatever amount of data they find relevant until one of them closes down
the socket.

/* */
/* Close the socket */
/* */

sockval = DoSocket ('Close', sockdescr)
if sockrc <> 0 then do
say 'Socket Close failed, rc='sockrc
say sockval
exit (sockre)
end

7.5 Terminating the REXX Socket API

In a REXX socket environment you will finish off using the socket
interface with a terminate socket call.

/* */
/* Terminate socket interface */
/* */

sockval = DoSocket ('Terminate')

if sockrc <> 0 then do
say 'Terminate failed, rc='sockrc
say sockval

A Beginner's Guide to MVS TCP/IP Socket Programming 107

A Beginner's Guide to MVS TCP/IP Socket Programming

exit (sockre)
end

8.0 Chapter 8. Datagram Socket Programs

This chapter explains the special characteristics of a datagram socket
program that uses UDP protocols.

Please see Appendix A, "Sample Datagram Socket Programs" in topic A.0 for
sample datagram socket programs.

[0 oo oo
o N

1 Datagram Socket Characteristics
Datagram Socket Program Structure

Use of Connect on a Datagram Socket
Transferring Data Over a Datagram Socket

(o¢]
[~

8.1 Datagram Socket Characteristics

The most significant characteristics of datagram sockets are as follows:
1. Datagram sockets are connection-less.

There is no connection setup done by the UDP protocol layer. No data
is exchanged between sending and receiving UDP protocol layers until
your application issues its first send call.

If your UDP server program has not been started or it resides on a
host that is currently unreachable from your client host, your client
UDP application may wait forever for a reply to the datagram it sent
to a UDP server. You will normally have to implement time-out logic
in your client UDP program to detect this situation.

2. The UDP protocol layer does not implement any reliability functions.

The implication of this is that a datagram sent from one UDP program
to another may never arrive. Neither the sending program nor the
anticipated receiving program will ever learn from the UDP protocol
layer that such a condition exists.

If your UDP application requires reliability, you must implement
reliability code in your UDP client and server programs. This
includes the ability to detect missing datagrams, datagrams arriving
out of sequence, duplicated datagrams or corrupted datagrams.

It is not a trivial matter to implement such functions, and we
recommend you use the TCP protocols and not the UDP protocols if your
application has strict reliability requirements.

3. Unlike a TCP socket, where there is no one-to-one relationship between

send calls and recv calls, a UDP socket send corresponds to exactly
one UDP socket recv call.

8.2 Datagram Socket Program Structure

The terms client and server are somewhat misleading for datagram socket
programs. Two socket programs that have each bound a socket to a local
address may send any number of datagrams to each other in any sequence.

A Beginner's Guide to MVS TCP/IP Socket Programming 108

A Beginner's Guide to MVS TCP/IP Socket Programming

The program that sends the first datagram will, in our terminology, act as
a client. Any datagram sent to a destination address for which no program
has bound a socket is lost. Care must be taken so that the program you
intend to be the client does not begin sending datagrams until after the
server program has bound its socket to the expected destination address.

The typical structure for a datagram socket server is a structure that
resembles the iterative server we defined in "Iterative Server" in

topic 3.7.1.

Datagram Client Program Datagram Server Program

Initialize socket API

|
Initialize socket API |
| Obtain a datagram socket
|
|

Obtain a datagram socket
Bind socket to local address Bind socket to local address

Do forever

Send a datagram >Receive a datagram
| | Process data
Receive a datagram< Send a datagram

end
Close socket
Terminate socket API

Close socket
Terminate socket API

Figure 40. Datagram Server Program Structure

The server program must bind its socket to a predefined server port
number, so the clients know to which port they should send their
datagrams. In the socket address structure that the server passes on the
bind call, it can specify if it will accept datagrams from all the
available network interfaces, or if it will only receive incoming
datagrams from a specific network interface. This is done by setting the
IP address field of the socket address structure to either INADDR_ANY or a
specific IP address.

The client program will also need to bind its socket to a local address,

if it wants the server program to be able to return a datagram to it. 1In
contrast to the server, the client does not need to specify any specific

port number on the bind call; an ephemeral port number chosen by the UDP

protocol layer will be sufficient. This is called a dynamic bind.

The server enters a blocking recvfrom call. In this example, we use the
recvfrom call, because in addition to a datagram, it also returns the
remote socket address. Our UDP server needs that address in order to
return a reply to the client, which it does by issuing a sendto call,
where it passes both a datagram and the remote socket address of the
client as parameters on the call.

After the server has processed one request, it loops back into a new
blocking recvfrom call, waiting for another datagram from possibly another
client.

If more UDP datagrams arrive in the UDP protocol layer destined for the
server UDP socket, the UDP protocol layer queues those datagrams and
passes them to the server one after the other on succeeding recvfrom
calls.

A Beginner's Guide to MVS TCP/IP Socket Programming 109

A Beginner's Guide to MVS TCP/IP Socket Programming

The UDP receive queue size in IBM TCP/IP Version 3 Release 1 for MVS is by
default 20, but you can customize IBM TCP/IP for MVS to use an unlimited
queue size by specifying the NOUDPQUEUELIMIT keyword in the ASSORTEDPARMS
section of the tcpip.v3rl.PROFILE.TCPIP configuration data set.

If the UDP receive queue exceeds its maximum size, any excess datagrams
are discarded without further notification.

8.3 Use of Connect on a Datagram Socket

You are able to use the connect call on a datagram socket, but it does not
perform the same function for a datagram socket as it does for a stream
socket.

On a connect call, you specify the remote socket address you want to
exchange datagrams with. This serves two purposes:

1. On succeeding calls to send datagrams, you can use the send call
without specifying a destination socket address. The datagram will be
sent to the socket address you specified on the connect call.

2. On succeeding calls to receive datagrams, only datagrams that
originate from the socket address you specified on the connect call
will be passed to your program from the UDP protocol layer.

Please remember, that a connect call for a datagram socket does not
establish any connection. No data is exchanged over the IP network as a
result of a connect call for a datagram socket. The functions performed
are local, and control is returned to your application immediately.

8.4 Transferring Data Over a Datagram Socket

If you are use to the MVS notion of records, it is extremely simple to
transfer data over a datagram socket. You send and you receive records of
data. One send call results in exactly one recv call.

If your sending program sends a datagram of, for example, 8192 bytes and
your receiving program issues a recv call, where it specifies a buffer
size of, for example, 4096 bytes, it will receive the 4096 bytes it
requested and the remaining 4096 bytes in the datagram will be discarded
by the UDP protocol layer without further notification to either sender or
receiver.

9.0 Chapter 9. IMS Sockets

This chapter includes information on how you develop IMS applications that
use the IMS sockets feature of IBM TCP/IP for MVS.

We will explain how IMS sockets is implemented in IBM TCP/IP Version 3
Release 1 for MVS and discuss the impact this implementation has on your
application design.

For basic socket programming information, please refer to_Chapter 5, "Your
First Socket Program" in topic 5.0.

If you need IMS socket call reference information or information on how

A Beginner's Guide to MVS TCP/IP Socket Programming 110

A Beginner's Guide to MVS TCP/IP Socket Programming

you customize the IMS socket feature, please see IBM TCP/IP for MVS: IMS
TCP/IP Application Development Guide and Reference, SC31-7186, and MVS
TCP/IP V3R1 Implementation Guide, GG24-3687.

(O
—

(O |© O
> o N

IMS and TCP/IP Networks

Overview of IMS Sockets

Concurrent Server in an IMS Environment
Dual-purpose IMS Programs

IMS Recovery Considerations

(O
(1

9.1 IMS and TCP/IP Networks

You may roughly divide IMS applications into the following two major
groups:

1. IMS applications that communicate with a user based on the traditional
IBM 3270 protocol

The IMS applications typically use the Message Formatting Services
(MFS) component of IMS to translate between the 3270 data stream and
the record oriented data format, the IMS applications use.

If the end user is connected via a TCP/IP network, the end user can
use TN3270 emulation software to emulate an IBM 3270 terminal. From
an IMS point of view, such a terminal is a fully normal IBM 3270
terminal, and no extra software is needed in IMS to support such
connections. All existing IBM 3270 based IMS applications can be used
from TCP/IP workstations in this way.

2. IMS applications that communicate with another application in a
typical client/server fashion

The programming interfaces used by IMS client/server applications vary
and depend on the ability of both the client and the server platform:

Advanced Program to Program Communication (APPC) is supported by
IMS.

IMS applications may use the Common Programming Interface
Communications (CPI-C) API for such applications. If the client
platform supports the LU6.2 protocols, those protocols offer you
many good features that you will not find in, for example, TCP or
UDP protocols. Such features are session and conversation
security, synchronization levels and conversation state control.

Message Queuing Interface (MQI) applications are supported by IMS.

If your applications are fully asynchronous in nature, and both
your IMS platform and your partner platform supports MQI
applications, this is an easy way to implement client/server
applications.

Distributed Computing Environment / Remote Procedure Call
(DCE/RPC) server applications are supported in IMS if you use the
MVS/ESA OpenEdition Distributed Computing Environment Application
Support Server for IMS (IMS/AS) feature.

If your partner program resides on a platform that supports the

Distributed Computing Environment, DCE/RPC is both a good and
strategic choice. Remote Procedure Call APIs are generally easier

A Beginner's Guide to MVS TCP/IP Socket Programming

111

A Beginner's Guide to MVS TCP/IP Socket Programming

to use than native socket APIs, because RPC APIs hide many of the
differences in data formats you typically find in a distributed
environment. DCE/RPC also includes directory services that will
assist your clients in locating a server and integrating security
features based on the DCE security implementation.

Native socket APIs are supported in the IMS environment if you
install the IBM TCP/IP Version 3 Release 1 for MVS IMS sockets
feature.

IMS sockets have been developed to provide access to IMS resources
from hosts that only support TCP/IP and the native socket APIs.
Currently you will find many platforms that do not support either
SNA LU6.2 or DCE/RPC but do support native TCP/IP.

9.2 Overview of IMS Sockets

The IMS socket feature consists of software that enables you to use socket
programs in an IMS dependent region. As we defined in "General Socket
Program Structure" in topic 3.7, socket programs can fall into the
following three categories:

1. Client programs that request services from a server program

Any IMS application can turn itself into a socket client by issuing
the proper socket calls for a socket client.

The IMS application can be a Message Processing Program (MPP) or a
Batch Message Program (BMP) that has been scheduled by traditional IMS
methods.

2. Iterative server programs that process client requests one at a time
in a serial fashion

Such a server program will typically be a BMP that is started once and
sits around forever to serve client requests serially. From an IMS
socket point of view, an iterative server may also be implemented as
an MPP; but that is not expected to be a typical implementation
because of the region occupancy characteristics of an iterative server
program.

3. Concurrent server programs that consist of both a concurrent server
main process (the scheduling process) and a number of parallel child
processes that process the client requests in parallel

The IMS sockets implementation of a concurrent server in IMS is based
on a BMP that runs the concurrent server main process and a number of
Message Processing Regions (MPR) that execute the concurrent server

child processes. The main process inserts IMS transaction requests to
the IMS message queues, and IMS schedules these transactions in the
MPRs.

The IMS socket feature includes the following two components:

The IMS listener
The IMS listener is a generic concurrent server main process.

The IMS listener is supplied as a general purpose concurrent server
main process. If you have requirements that go beyond the features of

A Beginner's Guide to MVS TCP/IP Socket Programming

112

A Beginner's Guide to MVS TCP/IP Socket Programming

this general purpose implementation, you are able to write your own
concurrent server main process and use that instead of the IMS
listener.

The IMS assist module

The IMS assist module enables you to develop concurrent server
programs that use the normal IMS call API to receive and send data
over a socket. This mode of programming is called implicit-mode as
opposed to programs that include explicit socket calls, called
explicit-mode programs. In an implicit-mode COBOL IMS sockets
program, you call CBLADLI instead of the normal CBLTDLI module, but
the call syntax is identicical. For PLI programs, you use PLIADLI;
for assembler programs, you use ASMADLI, and for C programs you use
CADLI. We will use the collective term xxxADLI for all four assist
module entry points. Please note that the AIBTDLI programming
interface that was introduced with IMS/ESA Version 3.3 is not
supported by the IMS sockets assist module.

Client programs and iterative server programs can only be developed as

explicit-mode programs. Server programs that are started by the IMS
listener may be developed as either explicit-mode or implicit-mode
programs.

See Figure 41 for an overview of the structure of IMS sockets.

| Socket | >|socket
|client |< >|server

| Socket | > | IMS
|client | |generic

IMS

| | Non-socket
Connect | MPR/BMP | transaction
| Socket | < | Socket | < initiation
| server|< >|client |

| Send/Recv | | |
| BMP
Connect | |Iterative

IMS
CTL
region

| Send/Recv

|
BMP TIM and input

Connect

TIM only | VvV |
[> | LISTENER
|

[
| AN [
| [[
MPR___ | [|
|Explicit |
> |mode |
| server

|
Send <
Recv
MPR |
|Assist code//|<
|/ /7| |
>|/|Implicit]|//| |
| | / |mode /71 |
| |/Iserver |//| |
| [l 1//] |
| |
| |

[//17777777777]
—

A Beginner's Guide to MVS TCP/IP Socket Programming

(ex. 3270
terminal)

113

A Beginner's Guide to MVS TCP/IP Socket Programming

Figure 41. IMS Sockets Structural Overview

IMS sockets do not introduce any new programming interfaces. IMS sockets
utilize existing APIs:

The C-socket API for IMS sockets explicit-mode applications written in

C

The Sockets Extended call API for IMS sockets explicit-mode
applications written in, for example, COBOL or PL/I

The IMS call API for IMS sockets implicit-mode applications written in

any IMS supported programming language

IMS sockets do not limit your programs to stream sockets (TCP protocols).
You may also use datagram sockets (UDP protocols) or even raw sockets (IP

protocols). Due to the unreliable nature of both datagram sockets and raw

sockets, most IMS socket applications are assumed to use stream sockets.

The IMS listener will only accept transaction requests via stream sockets.

Client and iterative server IMS socket applications are not different in
design or implementation from any normal MVS client and iterative server
socket applications, so we will not describe these in further detail in

this chapter. 1Instead, refer to Chapter 5, "Your First Socket Program" in

topic 5.0 and Chapter 7, "Socket Client Programs" in topic 7.0 for
information on such programs.

9.3 Concurrent Server in an IMS Environment

It is expected that the major part of your IMS socket applications will be

based on the concurrent server implementation using the IMS listener, and
this implementation is what the rest of this chapter will focus on.

The following section will define some terms that are used by the IMS
sockets implementation:

segment A segment is a segment of data that is formatted according
to IMS message standards, where the first 2 bytes contains
the length in binary network byte order of the data
including the length bytes:
0 2 4

|LL|zz|data |
Y |

|]< LL >|
The value of the zz field is not defined; we recommend you
initialize it to binary zeroes.

message A message is a sequence of segments where the last segment
is an End Of Message (EOM) segment:

0 2

A Beginner's Guide to MVS TCP/IP Socket Programming

114

A Beginner's Guide to MVS TCP/IP Socket Programming

|LL|zz]|
[

LL = 4

A message may consist of many segments, terminated by an EOM

segment.
|LL|zz|segment 1 data |LL|zz|segment 2 data 104100]|
1| 11
| < segment 1 >|< segment 2 > | <EOM> |

Nej
(3]
—

IMS Listener Security Exit

Remote Client Design Considerations
Explicit-mode Server Program
Implicit-mode Server Program

Ne
(O
N

NeJ
(o8]
o8]

(O
(3]
[~

9.3.1 IMS Listener Security Exit

You can optionally develop an exit routine to be included in the IMS
listener. The exit routine is called IMSLSECX, and it is called by the
IMS listener every time a new transaction request message is received.

The user exit is passed the client IP address, the client port number, and
the optional user data area of the TRM. See IBM TCP/IP for MVS: IMS
TCP/IP Application Development Guide and Reference, SC31-7186, for details
on the exit interface.

You can define an installation standard for your IMS socket environment
that covers the layout and content of the optional user data area in the
TRM.

In the ITSO-Raleigh sample installation, we defined the following layout
of the user data area in the TRM:

USERID 8 bytes user ID of client user

PASSWORD 8 bytes password of client user

NEWPASW 8 bytes optional new password of client user
GROUP 8 bytes optional RACF group ID

The sample security exit that was developed in the ITSO-Raleigh
installation performs the following functions:

1. Authenticate the user by issuing a RACROUTE REQUEST=VERIFY.

2. Test if the user is authorized to run the requested IMS transaction
code through the IMS socket interface by issuing a RACROUTE
REQUEST=AUTH for a FACILITY class resource called
TPI.IMSSOCK. trancode, where trancode is the IMS transaction code the
client user wants to start.

You could add additional checks based on the client IP address and/or port
number.

Depending on the above security checks, the TRM request is accepted or an
appropriate return code and reason code is returned to the client in the

A Beginner's Guide to MVS TCP/IP Socket Programming 115

A Beginner's Guide to MVS TCP/IP Socket Programming
RSM segment.

See M"IMS Tistener Security Exit" in topic C.4 for the sample IMS listener
security exit.

9.3.2 Remote Client Design Considerations

Use of the IMS listener imposes some design restrictions on your client
program:

When the client has established a connection with the IMS listener, it
must send a Transaction Request Message (TRM) segment with a layout as
expected by the IMS listener.

0 2 4 12 20

|LL|zz | *TRNREQ* | trancode |optional user-data|
[| | —

| < LL >|

The client must be prepared to receive a Request Status Message (RSM)
segment from the IMS listener, in case the IMS listener can not
initiate the requested transaction successfully.

0 2 4 12 16

|LL|zz | *REQSTS*| rc |reas|
[| | |

LL = 20

The returncode and reasoncode are returned as binary 2 byte fields
with the appropriate codes in network byte order.

The possible codes are defined in IBM TCP/IP for MVS: IMS TCP/IP
Application Development Guide and Reference, SC31-7186, and by your
listener security exit.

If the server program is an explicit-mode server program, the rest of the
interactions between the client and the server are left to be designed by
you. You are free to implement as many interactions (send / receive)
sequences as required by your application. There are no restrictions on
format, length or number of interactions.

If the server program is an implicit-mode server program, there are more
client design considerations that must be taken into account. Please see
"Tmplicit-mode Server Program" in topic 9.3.4, for information on these
additional considerations.

Your client programs must include logic that examines the first received
data from IMS to decide if it is an RSM segment that rejects the
transaction or if it is wvalid output from the IMS server program. One
technique to simplify this is always to let the server program send a
positive RSM segment as the first output. A positive RSM segment can be
defined as an RSM segment with rc=0 and reason code=0. In this way the
client program will always receive an RSM segment. It 1is either a

A Beginner's Guide to MVS TCP/IP Socket Programming

116

A Beginner's Guide to MVS TCP/IP Socket Programming

confirmation that the transaction request was successfully started or that
it was rejected, and the client program can act accordingly.

When the IMS listener receives a valid TRM segment, it inserts a
Transaction Initiation Message (TIM) segment on an IO Program Control
Block (IO PCB) in order to let IMS schedule the proper MPP.

All IMS transaction codes that the IMS listener must be able to initiate
are defined in a configuration data set that is read by the IMS listener
program when it is started. If a client sends a TRM segment with an IMS
transaction code that is not defined in this configuration data set, the
request will be rejected with a reason code of 1 in the RSM segment.

For every IMS transaction code in the IMS listener configuration data set,
there is an attribute associated that tells the IMS listener if the
transaction is implemented as an explicit-mode or as an implicit-mode
server program. The reason for this attribute is that the IMS listener
process 1s different for explicit-mode and implicit-mode server programs.

9.3.3 Explicit-mode Server Program

For an explicit-mode server program, the IMS listener only inserts the TIM
on the IMS message queue. When the server MPP is scheduled by IMS, it
receives the TIM on its initial Get Unique (GU) on the IO PCB. All the
data exchanged between the client and the server program are handled via
explicit socket calls in the server.

Client IMS Listener
|Send | | |
|TRM ____ _Transaction Request Message (TRM)___ >Receive TRM | 1
| | | If any error |
<__Request Status Message (RSM) Reject | 2
(Only sent if TRM is rejected) | else |
| Givesocket | 3
| ISRT TIM 4
| .
| .
|
AN
|___| Transaction
|| Initiation

| IMS message
| queues

IMS explicit mode server_

|
|
|
|
|
|
|
|
|
| |___| Message via
|
|
|
|
|
|
|
|
|

|

>GU IOPCB 5 |

| Initapi 6 |

| Takesocket 7 |

| Send/ | |
|Recv < Free format messages >Explicit socket calls 8 |
[Close		Close socket 9

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

Figure 42. Explicit-mode Server Program Initiation

The sequence numbers in the following explanation are all related to
Figure 42.

The sample data structures and coding examples are provided in COBOL.

The IMS listener is started as an IMS Batch Message Program (BMP) that
opens a socket and listens on a port that you define for connections from
the TCP/IP network and retrieval 1 of Transaction Request Messages (TRM)

from TCP/IP clients.

The layout of a TRM without optional user security data is:

* *
* Transaction Request Message segment *
* *

01 TRM-message.

05 TRM-length-11 pic 9(4) Binary Value 20.
05 TRM-length-zz pic x(2) Value low-value.
05 TRM-id pic x(8) Value '*TRNREQ*'.
05 TRM-trancode pic x(8) Value 'TRANCODE'.

05 TRM-security-data.

If your installation has implemented an IMS listener security exit
routine, you pass the required security related data as part of the TRM
segment. You do so by extending the segment with your data following the
TRM-trancode field. Remember to update the TRM-length-11 field with the
correct segment length according to your extension.

2 If a condition that is detectable by the IMS listener prevents it from
scheduling the requested IMS transaction, it will send back a Request
Status Message (RSM) segment to the client, informing the client of the
cause of rejection.

The format of an RSM segment is:

* *
* Transaction Request Status Message segment *
* *

01 RSM-message.

05 RSM-length-11 pic 9(4) Binary Value 20.
05 RSM-length-zz pic x(2) Value low-value.
05 RSM-regsts pic x(8).
88 RSM-msg Value '*REQSTS*'.
05 RSM-return-code pic 9(8) Binary Value zero.
88 RSM-OK Value zero.
88 RSM-error Value 8.
05 RSM-reason-code pic 9(8) Binary Value zero.
88 RSM—-not-defined Value 1.
88 RSM-IMS-error Value 2.
88 RSM-buffer-full Value 4.
88 RSM-AIB-error Value 5.
88 RSM-tran-unavailable Value 6.
88 RSM-format—-error Value 7.

3 If the TRM is accepted, the IMS listener issues a givesocket call,
where it gives the socket to the child process.

A Beginner's Guide to MVS TCP/IP Socket Programming 118

A Beginner's Guide to MVS TCP/IP Socket Programming

The IMS listener constructs an address space name and a task ID to be used
by the child process. The address space name 1s constructed according to
the ADDRSPCPFX keyword value in the listener configuration data set. If
this value is for example IL, the address space names generated by the
listener will be ILO00000 and upwards. The task ID is set to a fixed
value of IMSERVER.

This information is passed in the TIM to the child process. If the child
process is a Sockets Extended program, it can use these values on its
initapi call.

4 Based on information in the TRM, the IMS listener initiates IMS
transactions by inserting IMS messages, called Transaction Initiation
Messages (TIM), over an IMS alternate IO PCB.

5 The concurrent server child processes are scheduled as normal IMS
message processing programs that retrieve the TIM on their first Get
Unique (GU) on the IO PCB.

* *
* Transaction Initiation Message segment *
* *

01 TIM-message.

05 TIM-length-11 pic 9(4) Binary Value zero.
05 TIM-length-zz pic x(2) value low-value.
05 TIM-id pic x(8) wvalue space.
05 TIM-lstn—-name pic x(8) wvalue space.
05 TIM-l1lstn-task pic x(8) wvalue space.
05 TIM-srv-name pic x(8) wvalue space.
05 TIM-srv-task pic x(8) value space.
05 TIM-l1lstn-socketid pic 9(4) Binary value zero.
05 TIM-tcpip-name pic x(8) wvalue space.
05 TIM-data-type pic 9(4) value zero.
88 TIM-ascii value 0.
88 TIM-ebcdic value 1.
* *
* Receive TIM from listener *
* *
Call 'CBLTDLI' using dli-gu
iopcb
TIM-message.
If iopcb-status = 'QC' then
Move zero to return-code
Goback.

Please note that the TIM message segment includes a half-word where you
can test the contents to decide if the client process is an ASCII client
or an EBCDIC client. The IMS listener is able to make that decision based
on the fixed text (*TRNREQ*) in the TRM.

* *

* If client is ascii, translate RSM text to ascii before send *
* *
If TIM-ascii then
Move 8 to ezacic-len
Call 'EZACICO4' using RSM-oky
ezacic-len.

6 If the child process is an Sockets Extended application, it starts

A Beginner's Guide to MVS TCP/IP Socket Programming 119

A Beginner's Guide to MVS TCP/IP Socket Programming

with an initapi call, where it identifies itself as a client of the TCP/IP
address space named in the TIM (TIM-tcpip-name). It is recommended that
the child process identifies itself with the client ID constructed by the
IMS listener and passed to the child process in the TIM (TIM-srv-name and
TIM-srv-task); but, in the IBM TCP/IP Version 3 Release 1 for MVS
implementation, it is actually not a requirement. The IMS listener does
not give the socket to a specific client ID but rather to a client ID with
a blank address space name and task name. This means that any task that
refers to a socket descriptor that has been given by the IMS listener, but
not yet taken, will receive it. This is, under normal circumstances, not
a big exposure because the time period between the givesocket and the
takesocket is normally less than a few hundred milliseconds.

* *
* Variables used for the INITAPI call *
* *
01 soket—initapi pic x(16) wvalue 'INITAPI'.
01 maxsoc pic 9(4) Binary Value 50.
01 initapi-ident.
05 tcpname pic x(8) Value space.
05 myjobname pic x(8) Value space.
01 subtask pic x(8) wvalue space.
01 maxsno pic 9(8) Binary Value zero.
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
* *
* Initialize socket API with the values, we got from *
* the IMS listener. *
* *

Move TIM-srv-name to myjobname.
Move TIM-srv-task to subtask.
Move TIM-tcpip-name to tcpname.
Call 'EZASOKET' using soket-initapi

maxsoc

initapi-ident

subtask

maxsno

errno

retcode.
If retcode < 0 then

- process error -—

7 When the child process has identified itself, it can issue a
takesocket call to take over the socket from the listener.

* *
* Variables used by the TAKESOCKET Call *
* *
01 soket-takesocket pic x(16) value 'TAKESOCKET '
01 take-from-clientid.
05 take-from-domain pic 9(8) Binary Value 2.
05 take-from-name pic x(8) wvalue space.
05 take-from-task pic x(8) wvalue space.
05 filler pic x(20) value low-value.
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
01 socket-descriptor pic 9(4) Binary value zero.
* *
* Issue a take-socket with the values we got from *

A Beginner's Guide to MVS TCP/IP Socket Programming 120

A Beginner's Guide to MVS TCP/IP Socket Programming

* the IMS listener. *
* *

move TIM-lstn-name to take-from—name.
move TIM-lstn-task to take-from-task.
Call 'EZASOKET' using soket-takesocket
TIM-lstn-socketid
take-from-clientid
errno
retcode.
If retcode < 0 then
- process error -
else
move retcode to socket-descriptor.

On the takesocket call, the child process passes the client ID of the IMS
listener as the client ID of the process that gave the socket.

8 The socket is now fully transferred to the child process, and the
socket applications may exchange data with each other. When you use
explicit-mode, your server program is responsible for applying any
required translation to the data it receives or transmits.

9 Finally the client and the server child processes close their sockets
and break the connection.

9.3.4 Implicit-mode Server Program

For an implicit mode server program, the IMS listener performs a number of
actions in addition to those performed for explicit-mode server programs:

1. It receives all input segments from the client. The client signals
the end of input by sending an EOM segment.

2. If the client is an ASCII client (determined by examining the contents
of the TRNREQ constant in the TRM), the full input message is
translated from ASCII to EBCDIC. This action implies that you must be
careful with the design of the implicit mode application messages so
that you do not include any non-character data fields except the
length field in each segment.

3. The IMS listener then inserts the TIM as the first message segment on
the IMS message queue and follows it by all the input segments
retrieved from the client program (leaving out the EOM segment) .

The reason for doing it this way is that the implicit mode server program
retrieves its input via normal IMS GU and Get Next (GN) calls on its IO
PCB.

Client IMS Listener
|Send | | |
|TRM ____Transaction Request Message (TRM)___ >Receive TRM |
| | | If any error |
<__Request Status Message (RSM) Reject |
(Only sent if TRM is rejected) | else |

>RECV input segment (.
| Do while not EOM |
Send Input segments in IMS format | ISRT input segment __|

| _
| |

| | | ISRT TIM
| |

| |

|

A Beginner's Guide to MVS TCP/IP Socket Programming

121

A Beginner's Guide to MVS TCP/IP Socket Programming

(Terminated with End Of Message | >RECV input segment | |
segment) | end [
| end (.
| [
| [
|

| Transaction

| Initiation

| V | Message and
input segments
via IMS
message queues

|

| IMS Implicit Mode Server
| | //Assist code///////////]
| l// va
|
|
|

__TIM and 1lst input__>/|GU IOPCB input /71
|//|Do until status QD|//|
_ Subseq. input >/| GN IOPCB input |//|
| //1end /7]

|//|ISRT IOPCB output |//|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |
|

|

|

|

|

|

|

|

|

| |//|ISRT IOPCB output |//|
|
|
|

[//1. « . . /71

|//1GU IOPCB [//1

Recv /71 /71
<___ Output segments in IMS format J1717777777777777777771
<___FEnd Of Message segment /1177777 777777777777771

<__ Completed Status Message (CSM) J111777777777777777777)

Figure 43. Implicit-mode Server Program Initiation

For an IMS programmer, it is an easy task to write an implicit mode server
program in IMS. No socket calls are used at all. The server program uses
only normal DLI calls. The only difference from a traditional IMS program
is that you do not call the conventional IMS language interface routines,
but instead you call routines which are supplied as part of the IMS socket
support (the IMS assist routines). They are identified by module names
that are almost identical to those you already know: CBLADLI, PLIADLI,
ASMADLI and CADLI. The call syntax is identical to the syntax used with
the conventional routines.

The logic in an implicit mode echo server program could look like the
following (this example has, for the sake of simplicity, been stripped for
error checking logic):

* *
* Receive input segments from client and echo them back *
* *
Get-unique.
Call 'CBLADLI' using dli-gu
iopcb
buffer.
If iopcb-status = 'QC' then

go to exit-now.
Perform until iopcb-status not equal space
Call 'CBLADLI' using dli-isrt
iopcb

A Beginner's Guide to MVS TCP/IP Socket Programming 122

A Beginner's Guide to MVS TCP/IP Socket Programming

buffer
Call 'CBLADLI' using dli-gn

iopcb
buffer

end-perform.

Go to get-unique.

exit-now.
Goback.

The server program is easy to write for your IMS programmer, but your
client programmer must adhere to a set of rules and restrictions that are
imposed by the assist routines. Please see Figure 44 for an overview of
the processing performed by the assist module.

Implicit mode
Server Program Assist Module IMS CTL IMS Listener

ACCEPT connection <_>
RECV TRM segment <__
RECV input segment <___

RECV EOM segment <__

GIVESOCKET
Msg <___ ISRT TIM segment
queue <____ ISRT input segment
Schedule
MPP
|
Call CBLADLI GU IOPCB __ > Al: GU IOPCB to get TIM < |
A2: INITAPI
A3: TAKESOCKET
A4: GN IOPCB 1'st input segment
<__ A5: Return 1'st input segment
Call CBLADLI GN IOPCB __> Bl: GN IOPCB next input segment
<__ B2: Return next input segment or 'QD'
Call CBLxDLI xxxx DBPCB __ > Cl: Pass unchanged to DLI
<__ C2: Return result unchanged
Call CBLADLI ISRT IOPCB __ > D1l: Accumulate output segment
in 32K buffer
<__ D2: Return status code
Call CBLADLI GU IOPCB __> El: Append EOM segment
to output buffer
E2: Send output to client >
E3: GU IOPCB
E4: Send CSM segment to client >
E5: Close socket and TERMAPI < >
E6: If IOPCB status=blank then
GoTo A2
Else
< Return IOPCB status code

Figure 44. IMS Assist Module Process Flow

A Beginner's Guide to MVS TCP/IP Socket Programming 123

A Beginner's Guide to MVS TCP/IP Socket Programming

The assist module acts as an interface between an implicit mode server
program and the actual socket programming interface.

The design restrictions that apply to a client program that communicates
with an implicit-mode server program are:

There can only be one interaction per IMS transaction. Your client
must send all input data before it turns around and issues the first
read for output data from the IMS transaction. No continued dialog

between the client and server process is possible. IMS conversational

transaction mode is not supported.

Your client program must send data in the required format, which is 2

bytes segment length followed by two bytes binary zero followed by
your input data. In the following example, 20 bytes of user data is
sent to the server:

01 Message—-segment.

05 Segment-length-11 pic 9(4) Binary value 24.
05 Segment-length-zz pic xx value low-value.
05 Segment-data pic x(20)

Value 'Data segment 1'.

The client program may send more succeeding segments of variable

length input data. The last segment must always be an End Of Message

(EOM) segment:
01 EOM-message-segment.
05 filler pic 9(4) Binary value 4.
05 filler pic xx value low-value.

The total length of the input message must not exceed 32K.

If your client program is running on an ASCII host, all data in all
input segments are translated from ASCII to EBCDIC, and all data in

all output segments from the server program is translated from EBCDIC

to ASCII. You had better ensure that all data exchanged between the

client and the server is text data, otherwise unexpected results might

occur (or will certainly occur).

When the IMS server program inserts output segments to the client on
its IO PCB, the assist module accumulates the output into a buffer,
which has a maximum size of 32K, but the assist module does not send

anything over the socket connection until the server program signals a
commit point (by means of a new GU on the IO PCB). At this time, the
assist module sends each accumulated output segment in the same format
as the input segments. When the last segment has been sent, the
assist module generates an EOM segment and sends it to the client.

All output segments are sent directly over the socket connection, so
the IMS message queues are not used for output data.

The assist module then passes the GU call to the real DLI language
interface routines, which perform the real IMS commit and optionally
returns a new input message. If the GU is successful (either passing
a new transaction or returning a QC status code), the assist module
finishes the previous transaction by sending a Completed Status
Message (CSM) segment to the client, and the socket is closed.

Please see "IMS Recovervy Considerations" in topic 9.5 for information
on unsuccessful DL/I calls and recovery considerations.

A Beginner's Guide to MVS TCP/IP Socket Programming 124

A Beginner's Guide to MVS TCP/IP Socket Programming

* *
* Complete Status Message segment *
* *

01 CSM-message.

05 CSM-length-11 pic 9(4) Binary Value 12.
05 CSM-length-zz pic x(2) Value low-value.
05 CSM-oky pic x(8) value '*CSMOKY*'.

Note: Do not define your implicit mode server IMS applications as Wait
For Input (WFI), as IMS will not return control on a GU on the IO PCB for
such an application until a new transaction has entered IMS. The socket
client on the previous transaction will wait for a CSM segment until this
happens. You must also ensure that you have disabled the IMS pseudo-WFI
scheduling option by specifying an MPR JCL keyword of PWEFI=N.

9.4 Dual-purpose IMS Programs

An IMS MPP that uses MFS to communicate with IBM 3270 terminals interfaces
with MFS using record formats as defined in an MFS message input
descriptor (MID) and an MFS message output descriptor (MOD). If you
develop your socket client so it bases its interface to the IMS MPP on the
exact same formats as defined in the MPP's MID and MOD, the same MPP may
be used concurrently with IBM 3270 terminals and socket clients.

__TIM >|Assist | Application |

| |module | Code |

| | | |

| ~ |

| | v
|IMS Listener|____input >| MID | | MOD |

| BMP | | | | |
| » (.

A

TRM and input
|
|V

| Socket | | MF'S |
| client | | |
| ~

3270 terminal

Figure 45. Dual-purpose IMS Program Input/Output Flow

It is easiest to develop the socket client if the MPP uses MFS formatting
option 1, but both formatting option 2 and 3 may be used. Option 2 and 3
do add some complexity to the socket client program, as it must emulate
the MFS processing done for each formatting option.

The IMS socket interface does not pass a MOD name back to a socket client.

A Beginner's Guide to MVS TCP/IP Socket Programming 125

A Beginner's Guide to MVS TCP/IP Socket Programming

As long as the MID - MOD sequence is predetermined via the NEXT keywords
in the MFS format set, this is not a problem. If your MPP changes the
next MOD name dynamically, the socket client will probably need that
information in order to apply the correct interpretation to the segments
it receives from the IMS MPP. If the decision cannot be made based on
segment length or content, you may have to add code to the MPP that imbeds
the MOD name in a segment sent to the socket client. The MPP is able to
detect if input is from a socket client or from an IBM 3270 terminal by
looking at the input segment ZZ field. If input is from an IBM 3270
terminal, it contains the MFS formatting option used for the segment. You
can design your socket clients so that they send a ZZ value of zero and
use that value to detect that input is from a socket client. When your
MPP needs to change the MOD name, you can add code that adds a special
output segment to the socket output stream with the MOD name imbedded.
Such a segment could, for example, be:

0 2 4 12

|LL| zz | *TRNMOD* | modname |
1| | |

LL = 20

Based on your MPP logic, this segment will only be sent to a socket
client, and the socket client uses it to determine that the following
segment is formatted according to the MOD name passed in the preceding
TRNMOD segment.

To use an existing MPP as a dual-purpose program, you must change all DL/I
calls from xxxTDLI to xxxADLI. xxxADLI is the IMS sockets assist module.
It will act as the normal xxxTDLI module if input is not from a socket
client. TIf your existing MPP uses the AIBTDLI interface, the call syntax
must be changed to the older xxxTDLI calls.

Please see "Dual Purpose Implicit Mode IMS Server Program" in topic C.1,
for a sample COBOL based dual-purpose IMS program.

9.5 IMS Recovery Considerations

There are some issues with the IMS implementation of sockets that you must
be aware of when you plan to use IMS sockets.

1. In the IBM TCP/IP Version 3 Release 1 for MVS implementation of IMS
sockets, a socket is not a recoverable IMS resource, and the messages
exchanged over a socket are not recoverable because they are not
passing through the IMS message queues. The only IMS recoverable
message in this context is the TIM segment, which is being inserted by
the IMS listener as a normal IMS message segment. When an MPP is
scheduled, the TIM is read and a socket is taken from the IMS
listener. For an implicit mode server the input segments from the
client is also passed to the server via the IMS message queue; so, for
an implicit mode server, both the TIM and the input message are IMS
recoverable resources. IMS may pseudo abend an MPP after it has taken
a socket and rescheduled it. When the MPP is rescheduled, possibly in
another MPR, the TIM is reread on the first GU (because the TIM is
recovered by IMS), but the socket is no longer available for a
takesocket call, and the takesocket call will fail.

A Beginner's Guide to MVS TCP/IP Socket Programming 126

A Beginner's Guide to MVS TCP/IP Socket Programming

An explicit mode program can test the socket return code and error
number fields and take appropriate action, but an implicit mode
program 1is supposed to use the standard IMS call interface, so it does
not see any socket return codes or error numbers. If an underlying
socket call results in an error situation, the status must be returned
to the implicit mode program via the standard IMS IO PCB status code
field. The IMS IO PCB may be defined as follows:

* *
* Input-Output PCB layout *
* *
01 iopcb.

05 iopcb-lterm pic x(8).

05 iopcb-assist-status-bin pic s9(4) comp.

05 iopcb-assist-status—-char redefines

iopcb—-assist-status-bin pic x(2).

88 iopcb-assist—aib-error value 'EA'.
88 iopcb-assist-buffer-full value 'EB'.

88 iopcb-assist-tim-only value 'EC'.
05 iopcb-status pic x(2).

88 iopcb-dli-stop value 'QC'.

88 iopcb-dli-ok value ' '.

88 iopcb-assist—-error value 'ZZ°'.
05 iopcb-cdate pic s9(7) comp-3.
05 iopcb-ctime pic s9(7) comp-3.
05 iopcb-input-msgno pic 9(8) binary.
05 iopcb-output-mod pic x(8).
05 iopcb-userid pic x(8).

If a socket interface error occurs, an IO PCB status code of ZZ will
be returned to the implicit mode application. More information about
the socket error is located in the two reserved bytes of the IMS IO
PCB that follows the LTERM name.

2. You must also be aware that IMS sockets do not assist you in
synchronizing updates done by your IMS socket server and socket
client. The assist module does send back the CSM segment at a point
in time where the IMS resources have been committed by IMS, but this
is not a two-phase commit protocol that can be used to ensure
synchronization of updates. IMS will never know 1if the client was
able to commit or not commit its resources following the receipt of
the CSM segment.

3. 1If the transaction code in the TRM segment is unavailable (either not
defined to IMS or temporarily stopped), the IMS listener sends back an
RSM segment with proper return codes. We recommend that you always
include code in your client programs that are able to deal with an RSM
segment, and interpret the return code in order to inform the user of
the reason for rejection. When the IMS listener rejects a
transaction, it does write out a short message on SYSPRINT in the
listener BMP address space. You may be able to look at that with
SDSEF'.

10.0 Chapter 10. CICS Sockets

This chapter explains how CICS sockets are implemented and how you can use
CICS sockets to implement a concurrent socket server as CICS transaction
programs.

For a more detailed explanation of CICS sockets, you may read CICS/ESA and
TCP/IP for MVS Socket Interface, GG24-4026. It was written for IBM TCP/IP

A Beginner's Guide to MVS TCP/IP Socket Programming

A Beginner's Guide to MVS TCP/IP Socket Programming

Version 2 Release 2 for MVS but is still a good introduction to CICS
sockets.

For basic socket programming information, please refer to_Chapter 5, "Your
First Socket Program" in topic 5.0.

If you need CICS socket call reference information or information on how
to customize the CICS socket feature, please see IBM TCP/IP for MVS: CICS
TCP/IP Socket Interface Guide and Reference, SC31-7131, and MVS TCP/IP
V3R1 Implementation Guide, GG24-3687.

—
O
—

CICS and TCP/IP Networks

Overview of CICS Sockets

Concurrent Server in a CICS Environment
Link Editing CICS Socket Programs

—
O
N

—
O
{O8]

—
O
IS

10.1 CICS and TCP/IP Networks

CICS applications may be divided into the same major groups as we used for
IMS applications:

1. The first major group is CICS applications that communicate with a
user based on the traditional IBM 3270 protocol.

Such CICS applications typically uses the Basic Mapping Support (BMS)
facilities of CICS to translate between the 3270 data stream and the
record oriented format that is expected by a CICS application.

Users in a TCP/IP network may use this type of CICS applications if
their workstation has TN3270 emulation software.

2. The second major group is CICS applications that communicate with
another application in a typical client/server fashion.

Like IMS, CICS supports a range of programming interfaces to be used
by client/server applications:

Advanced Program to Program Communication (APPC) is supported by
CICS, including the Common Programming Interface for
Communications (CPI-C).

Message Queuing Interface (MQI) applications are supported by
CICS.

Distributed Computing Environment/Remote Procedure Call (DCE/RPC)
server applications are supported in CICS, if you use the MVS/ESA
OpenEdition Distributed Computing Environment Application Support
Server for CICS (CICS/AS) feature with CICS/ESA Version 4.

IBM CICS Open Network Computing Remote Procedure Call feature
supports ONC/RPC server programs to run in CICS/ESA Version 3.3
and Version 4.

CICS intercommunication facilities enables you to use standard
CICS functions across CICS systems implemented on different
platforms, for example, CICS/ESA, CICS 0S/2 or CICS/6000. The
CICS intercommunication facilities include:

- Function shipping

- Distributed program link (DPL)

A Beginner's Guide to MVS TCP/IP Socket Programming 128

A Beginner's Guide to MVS TCP/IP Socket Programming

- Asynchronous processing
- Transaction routing
- Distributed transaction processing (DTP)

We refer you to the relevant CICS documentation for details on
these very powerful facilities.

If you develop client/server applications for platforms that
support CICS, the CICS intercommunication facilities offer you a
consistent way to implement your application across a number of
platforms.

Native socket APIs are supported in CICS, if you install the IBM
TCP/IP Version 3 Release 1 for MVS CICS sockets feature.

If your partner programs are located on hosts that only support
TCP/IP and the native socket APIs, the CICS sockets feature 1is
your choice for creating CICS client/server applications.

10.2 Overview of CICS Sockets

The CICS sockets feature consists of software that enables you to use
TCP/IP socket programs in a CICS task:

1. Client programs that request service from remote servers

Any CICS task may turn itself into a socket client program by issuing
the proper client socket calls.

2. Iterative server programs that process client requests one at a time
in a serial fashion

In a CICS environment, an iterative server will be considered a
long-running CICS task. Such a server task is typically started when
CICS is started and keeps running until CICS is shut down.

3. Concurrent server programs

In the CICS environment, the concurrent server main process will be a
long-running CICS task that accepts connection requests from the
network and initiates child processes by issuing EXEC CICS START
commands. The child processes execute as normal short CICS tasks.

See Figure 46 for an overview of how the different application types are
implemented in a CICS environment.

CICS Address Space
|

|
Connect | CICS task__ |
| Socket | < | Socket [<_
| server|< >|client | | | Non—-socket
| | Send/Recv | | | | | transaction
| | initiation.
| CICS task__ | | 3270 terminal
Connect | |Iterative < | | or batch input
| Socket | >|socket | |

A Beginner's Guide to MVS TCP/IP Socket Programming

129

A Beginner's Guide to MVS TCP/IP Socket Programming

|client |< >|server | |
[| Send/Recv | | | I
|
|

Connect | CICS task__
| Socket | >|CICS
|client | >|generic
| | Send TRM | LISTENER
|

< CSKL CICS
transaction code

CICS task____
| Concurrent |
Send/recv | server |
< >|child |
|
|

|process

Figure 46. CICS Socket Application Overview
The CICS sockets feature includes the following components:
The CICS listener

The CICS listener is a general purpose concurrent server main process.
The name of the program is EZACIC02, and it is started by the CSKL
CICS transaction code. When you enter the CSKE transaction code to
enable the task related user exit, the transaction code CSKL is
started by the enable program.

A CICS adapter that provides an interface between CICS tasks and the
TCP/IP system address space.

The CICS adapter consists of four components:

1. The first is a stub module that must be link edited with any CICS
program that uses socket functions. The stub module is called
EZACICAL.

2. The second is a CICS task related user exit (TRUE) that acts as
the interface between a CICS task, which uses socket functions,
and the TCP/IP communicating subtasks in the CICS address space.
The name of the task related user exit is EZACICO1l.

3. Every time a CICS task issues its first socket call, a companion
MVS subtask is started in the CICS address space. This subtask
handles the actual socket communication between the CICS address
space and the TCP/IP system address space. When the CICS task
terminates, the companion MVS subtask is terminated too. The name
of the module that executes in these subtasks is EZACICO03.

4. The last is a set of administrative routines that are used to
enable and disable the CICS sockets task related user exit
function. CICS transaction code CSKE is used to enable the task
related user exit, and transaction code CSKD is used to disable
it.

Figure 47 shows an overview of the CICS adapter components.

A Beginner's Guide to MVS TCP/IP Socket Programming

130

A Beginner's Guide to MVS TCP/IP Socket Programming

listener		user		user
program		program		program
EZACICO2				
v	v	v		
S D S D N B				
stub (EZACICAL)		stub (EZACICAL)		stub (EZACICAL)
- | - | l__ |
| » | » | »
v | v | v |
| | | | | | | | |
| tie | | | tie | | | tie | |
| | | | | | | | |
» | » | » |
v A\ v v \Y4 A\
|enable/ |
|disable |___ >| task related user exit
|EZACICOO | | EZACICOLl |
| | | |
| | » » »
|
| global work area (GWA) |
| |
A\ A\ \Y4

MVS subtask		MVS subtask		MVS subtask
and exit		and exit		and exit
EZACICO3		EZACICO3		EZACICO3

A A A
Y% \Y% Y
| Iucv |

Figure 47. CICS Sockets Infrastructure

You may develop your CICS sockets programs using one of the following IBM
TCP/IP for MVS socket APIs:

The C-socket API for C based CICS programs (not all C socket calls are
supported in the CICS sockets environment) .

The Sockets Extended call API for programs written in, for example,
COBOL or PL/T.

The IBM TCP/IP Version 2 Release 2 for MVS CICS sockets call API.
This call API is supported by IBM TCP/IP Version 3 Release 1 for MVS
for compatibility purposes. We recommend that you use the Sockets

Extended API for development of new CICS sockets applications.

The CICS sockets feature supports stream sockets (TCP protocols) and
datagram sockets (UDP protocols), but not raw sockets.

Client and iterative server CICS sockets applications do not differ from

A Beginner's Guide to MVS TCP/IP Socket Programming 131

A Beginner's Guide to MVS TCP/IP Socket Programming

similar programs in a native MVS environment, so we will not go into
detail with those in this chapter. The concurrent server implementation
is specific to the CICS environment, and we will discuss that in more
details in the sections that follow.

10.3 Concurrent Server in a CICS Environment

_CICS Listener process

|

| Do forever

|___>Accept a connection request

|__ >Read TRM from client

| | Pass TRM to security exit

Client process | | EXEC CICS START passing TIM
| | Givesocket
| |
| |
|

Connect to server	_
	end
Send TRM	
Read OK message<__	
A\	
_TIM

|
| |
| Send request |

| |

|Read reply< |

| |
|

- | Socket descriptor |
|Listener client ID |
|TRM user data |
|[Client socket address struct|

|Close connection< |

Server child process

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | |
| |_|_>EXEC CICS RETRIEVE of TIM |
| |_>Takesocket
|__Send OK message to client |
|_>Read client request |
|__Send client reply |
|_>Close socket |
| I
| I

Figure 48. Concurrent Server in CICS

IBM TCP/IP for MVS supplies a generic concurrent server main process
called the CICS listener. The CICS listener is generic in the sense that
it acts as a CICS transaction scheduler that receives Transaction Request
Messages (TRM) from the TCP/IP network.

The CICS listener is implemented as a long-running CICS transaction (CSKL)
that is started when you enable the socket programming interface in CICS
via the CSKE CICS transaction.

The CICS listener uses EXEC CICS START commands to schedule new
transactions in CICS. The transaction to start is derived from fields in
a predefined layout of the Transaction Request Message, which a TCP/IP

client sends to the CICS listener over a socket connection.

The format of the TRM for the CICS listener is shown in_Figqure 49.

A Beginner's Guide to MVS TCP/IP Socket Programming 132

A Beginner's Guide to MVS TCP/IP Socket Programming

|tran|, |optional client datal, |IC/TD|, |hhmmss |
| [| || ||

Figure 49. CICS Listener Transaction Request Message Format

The CICS listener TRM is wvariable in length, but the listener always
issues a recv call for 50 bytes, which is the maximum allowed lenght of a
TRM. If your client sends a TRM of, for example, four bytes and then goes
on pushing data to the child server onto the stream, some of this data may
be returned to the CICS listener and may be lost. We recommend that you
always either send a 50 byte TRM message holding your actual TRM data
padded with spaces up to the 50 byte limit, or that your remote clients
always issue a receive call immediately after having sent the TRM in order
to flush the TCP send buffer (See "Streams and Messages" in topic 5.8.1
for details on this technique).

Each field in the TRM is separated by a comma. The absence of a field for
example, the client data field is signalled by two successive comma's:
TRN, ,IC,113015.

tran This is the CICS transaction code you want to start.

client-data You can optionally include up to 35 bytes of data, but it
might be a more clean design to reserve these 35 bytes for
other purposes. You could for example define a standard
for inclusion of security related information in the
transaction request message. You can write a security exit
to be included in the CICS listener. This exit will
receive the 35 bytes of user data, and can make user
verification decisions based on this. Please see CICS/ESA
and TCP/IP for MVS Sockets Interface, GG24-4026, for
recommendations on how you can implement a listener
security exit in CICS.

IC or TD IC or TD means Transient Data or Interval Control. If you
specify IC, then you can specify the interval time
following (hhmmss) as the last part of the TRM.

To have the CICS listener start, for example, CICS transaction TPIT
immediately and without any client-data, the client would connect via the
socket interface to the CICS listener and send the following TRM to the
listener:

TPIT (padded with blanks up to 50 bytes)

If the user security exit accepts the transaction request, the CICS
listener will issue a givesocket and an EXEC CICS START of the TPIT CICS
transaction.

Under normal circumstances, the CICS listener will not send data back to
the client over the socket connection. However, if the CICS listener is
unable to start a CICS transaction, either because of validation errors or
because the user security exit rejected the transaction, it will send back
a 72 byte long error message to the socket client in the following format:

TCPCICSERR: specific error text (padded with blanks to 72)

A Beginner's Guide to MVS TCP/IP Socket Programming 133

A Beginner's Guide to MVS TCP/IP Socket Programming

The CICS listener will translate the error message to ASCII if the client
sent a TRM in ASCII. Good programming practices recommend that you
include logic in your client program to test for the fixed text TCPCICSERR
in the first 10 bytes of the first message it receives from the server
side and act accordingly.

The CICS listener gives the socket to a process in the same address space
as itself, but it does not give it to a specific task id. The implication
of this is that the CICS transaction must start in the same CICS address
space as the one where the listener is executing.

On the EXEC CICS START command in the CICS listener, a Transaction
Initiation Message (TIM) is passed to the started CICS transaction. The
TIM includes the following information:

1. It includes the socket descriptor, which was returned to the listener
on an accept call and which was given via a givesocket call.

2. It includes 8 bytes with the CICS address space name, where the
listener is executing.

3. It includes another 8 bytes with the subtask id of the listener.
4. It includes the 35 bytes of client data that can be included in the
transaction request. The security user exit may optionally exclude

this information from the area passed to the CICS transaction.

5. Finally it includes a socket address structure for the client that
initiated this request.

* *
* Transaction Initiation Message from CICS listener *
* *
01 TIM.
05 give-take-sd pic 9(8) Binary.
05 lstn-asname pic x(8).
05 lstn-subtask pic x(8).
05 client-in-data pic x(35).
05 filler pic x(1).
05 sockaddr-in.
10 sin-family pic 9(4) Binary.
10 sin-port pic 9(4) Binary.
10 sin-addr pic 9(8) Binary.
10 sin-zero pic x(8).

When the transaction is scheduled by CICS, it must first retrieve the TIM
from CICS.

* *
* Retrieve Transaction Initiation Message from Listener *
* *

move 72 to cleng.

exec cics retrieve
into (TIM)
length (cleng)

end-exec.

The server program may then issue an initapi call to identify itself.

* *

A Beginner's Guide to MVS TCP/IP Socket Programming 134

A Beginner's Guide to MVS TCP/IP Socket Programming

initapi parameters

*
*

01
01
01
01

01

01

errno pic
retcode pic
init-maxsoc pic
init-ident.

05 init-tcpname pic
05 init-asname pic
init-subtask.

05 init-cics-task pic
05 filler pic
init-maxsno pic

9(8) binary value zero.
s9(8) binary value zero.
9(4) Binary value 10.

x(8) value 'T18ATCP'.
x(8) value space.

9(7).
x value 'I'.
9(8) Binary value zero.

Initialize socket API

move space to init-asname.

move eibtaskn to init-cics-task.
call 'EZASOKET' using soket-initapi,

init-maxsoc
init-ident
init-subtask
init-maxsno
errno
retcode.

if retcode < 0 then

move 'Initapi failed' to cics—-msg-area
perform write-cics thru write-cics-exit

go to pgm-exit.

The concurrent server child program may, instead of an initapi call, start

out directly with a takesocket call.
the takesocket call,
to the client ID.

space name, and the subtask ID will

suffixed with the letter T.
available for a program,

If the server program starts with

the CICS sockets interface will assign default values
The address space name will be set to the CICS address

be set to the CICS task number

The maximum number of sockets that will be
that does not issue the initapi call, is 50.

The takesocket call parameters are based on the TIM values. The server
program must take the socket from the client ID passed in the TIM fields:

LSTN-ASNAME and LSTN-SUBTASK.

the TIM field: GIVE-TAKE-SD.

The socket descriptor to take is passed in

Takesocket parameters

01
01
01
01
01

soket-takesocket
sockid

errno

retcode
clientid-1stn.

05 cid-domain-lstn
05 cid-name-1lstn

05 cid-subtask-1lstn
05 cid-res-1stn

pic x(16) value 'TAKESOCKET '
pic 9(4) binary.

pic 9(8) binary value zero.

pic s9(8) binary value zero.

pic 9(8) binary.

pic x(8) wvalue space.

pic x(8) wvalue space.

pic x(20) value low-value.

Take socket from CICS Listener *

move sin-family to cid-domain-lstn.
move lstn—-asname to cid—name-lstn.

A Beginner's Guide to MVS TCP/IP Socket Programming

135

A Beginner's Guide to MVS TCP/IP Socket Programming

move lstn-subtask to cid-subtask-lstn.
move low-value to cid-res-1l1lstn.
move give-take-sd to sockid.
call 'ezasoket' using soket-takesocket
sockid
clientid-1stn
errno
retcode.

if retcode < 0 then
move 'Take socket error' to cics—-msg-area
perform write-cics thru write-cics-exit
go to pgm-exit

else
move retcode to sockid

end-if.

After your CICS program has taken the socket from the CICS listener, it
will, from a socket program point of view, act as any other socket program
in MVS. It may enter a number of receive/send sequences and will finally
close the socket and call the termapi function.

If your client process may run on non-EBCDIC platforms, you must remember
to include in your message design a way for the server to detect that the
client sends and expects data in ASCII.

As for any CICS program, you should try to avoid long conversations with
the end-user. The CICS task ties up resources for other CICS tasks while
it is active. From a CICS resource point of view, a design, where your
socket client starts a number of short consecutive CICS transactions, will
be better than a design where your socket client starts one CICS
transaction that stays active for a longer period. The issues are
well-known to most CICS programmers. Try to avoid conversational
transactions and base your design on some kind of pseudo-conversational
implementation instead.

You can use the supplied CICS listener function as it is, or you can of
course also write your own listener application, which basically serves
the same purpose as the supplied CICS listener.

10.4 Link Editing CICS Socket Programs

When you develop your CICS socket programs, you may use either the
EZACICAL call interface or the EZASOKET call interface that is supplied
with IBM TCP/IP Version 3 Release 1 for MVS. You may even mix calls to
the two interfaces in the same program.

When you link edit your CICS sockets program, you must always explicitly
include the EZACICAL module even if you do not call EZACICAL. The
EZACICAL module will resolve all external references to EZASOKET for CICS
socket programs, in addition to bringing in the proper CICS socket
interface code.

Please see "COBOL Compile JCL Procedure" in topic I.2 and "Link/Fdit JCL
Procedure" in topic T.4 for sample compile and MVS binder JCL for a COBOL
language CICS socket program.

Note: Be aware that, if your CICS sockets program only uses the Sockets
Extended API (calls to EZASOKET), a link edit step without specific
inclusion of EZACICAL will give a returncode of zero, but the EZASOKET
code included will not be the CICS sockets version. When you execute the

A Beginner's Guide to MVS TCP/IP Socket Programming 136

A Beginner's Guide to MVS TCP/IP Socket Programming

CICS program, it may seem to work, but each socket call will put the CICS
main task TCB into an MVS wait, which is not to be recommended.

11.0 Chapter 11. Debugging and Tracing Socket Programs

This chapter will include information on the techniques you have available
for debugging socket applications.

We will recommend some programming practices that will provide you with
accurate information in exception situations, and we will introduce
relevant tracing facilities in IBM TCP/IP Version 3 Release 1 for MVS.

—

1.1 Exception Handling
Application Trace Facilities
TCP/IP Packet Trace

IUCV Socket API Trace Function

—
—
N

—
—
o8]

—
—
s

11.1 Exception Handling

All socket calls return some kind of status information. Most calls
return a socket interface return code (RETCODE) and an error
identification number (ERRNO) .

The return code can have one of the following values on return from a
socket call:

-1 The socket call was unsuccessful. The ERRNO field should be
examined to determine the cause of the error.

0 The socket call was successful.

>0 The socket call was successful. The value returned in RETCODE is
call specific. For read and write type socket calls, the value
informs you of how many bytes were actually read or written on this
call. Other calls that may return a positive return code are:

accept The value returned is the new socket descriptor
number.
fentl For a query call, a return code of four means that the

socket is in non-blocking mode.

select A positive return code represents the number of ready
sockets in the select masks.

socket A return code of zero or above, represents the new
socket descriptor.

takesocket A return code of zero or above, represents the new
socket descriptor.

For some calls a RETCODE of -1 may be acceptable, and the situation must
be handled by the program. An example of such a call is the connect call
that returns a RETCODE of -1 (and an ERRNO value of EADDRNOTAVAIL or
ETIMEDOUT), when a connect request to an IP address fails. If the host
that the program tries to connect to has more network interfaces, the
program can retry the connect with the next IP address in the host entry
structure.

A Beginner's Guide to MVS TCP/IP Socket Programming 137

A Beginner's Guide to MVS TCP/IP Socket Programming

Another example is socket calls for sockets that are in non-blocking mode.
If the call had been in blocking mode and the call because of this
blocking mode would have blocked, the non-blocking call will instead
return a RETCODE of -1 and an ERRNO value of EWOULDBLOCK.

We strongly recommend that you include logic after each socket call to
filter out acceptable RETCODE and ERRNO combinations, and process these as
appropriate. All unacceptable combinations should, as a minimum, result
in logging of an error message and proper logic to clean up any sockets
that were left in an uncertain state. This most often means: closing the
socket.

In a C program you can print out a socket error message by using the
tcperror () routine.

if (send(sd, buf, sizeof(buf), 0) < 0)
tcperror ("Write returned error");
s=close (sd);
exit (8);

A corresponding routine does not exist for the other socket programming
interfaces. If you use one of these, you will have to create a similar
routine as part of your application.

* *
* Error message for socket interface errors *
* *

01 ezaerror-msg.

05 filler pic x(9) Value 'Function='.
05 ezaerror-function pic x(16) Value space.
05 filler pic x(9) Value ' Retcode='.
05 ezaerror-retcode pic ——-99.
05 filler pic x(9) Value ' Errorno='.
05 ezaerror—errno pic zzz99.
05 filler pic x(1) Vvalue ' '.
05 ezaerror-text pic x(50) Value ' '.
* *
* Send data and check exceptions *
* *

Call 'EZASOKET' using soket-write
socket-descriptor
send-request-remaining
send-buffer-byte (send-request-sent + 1)
errno
retcode

If retcode < 0 then
move soket-write to ezaerror-function
move 'Write call failed' to ezaerror-text
move errno to ezaerror—errno
move retcode to ezaerror-retcode
display ezaerror-msg
Call 'EZASOKET' using soket-close

socket-descriptor
errno
retcode
move 8 to return-code
goback
endif

A Beginner's Guide to MVS TCP/IP Socket Programming 138

A Beginner's Guide to MVS TCP/IP Socket Programming

You may have to use different techniques for printing the error message
depending on your runtime environment. For a CICS program, you may want
to direct the error message to a CICS transient data queue:

* *
* Write out an error message to CSMT *
* *

exec cics writeq td

queue ('CSMT')

from(ezaerror—-msg)

length (ezaerror-msg-len) nohandle
end-exec.

Refer to IBM TCP/IP for MVS: Application Programming Interface Reference,
SC31-7187, Appendix B for a complete list of error codes that may be
returned by each of the socket programming interfaces.

11.2 Application Trace Facilities

If you include proper logic to both deal with exception situations and log
error information, you will have a good chance of identifying the cause of
most problems your programs may encounter.

During the development phase of new socket applications, it has proven to
be useful to include logic in your programs that will actually log tracing
information for both successful and unsuccessful socket calls. If you do
include such logic, base your tracing logic on some global switch so that
you can turn tracing on or off either by passing a runtime parameter to
the program when it starts or by setting a constant in the programs static
working storage and recompile it.

If you encounter problems, which can not be identified by your application
trace facilities, you have a couple of tracing options you can use within
the TCP/IP product.

Tracing within the TCP/IP product can take place at a number of different
levels. We recommend that you limit yourself to the following two of
these levels:

A trace of the IP packets that are received or transmitted over a
network interface

If you suspect that you have a problem with the contents of data you
receive or send out or that there is a problem with the sequence of
data you receive, the packet trace is likely to reveal those problems
to you.

We recommend that you start with this level of tracing. The tracing
operation is easy to perform, and the amount of trace data can be
controlled via the parameters that are passed to the packet trace
function of TCP/IP.

A trace of the IUCV based socket API (these are C-sockets, Sockets
Extended and REXX sockets)

If the socket calls you execute in your program do not result in any
IP packets being exchanged over the network, this level of tracing can

be necessary to identify the source of your problem.

This is very detailed and complicated to perform. We recommend that
you only use this trace in extreme cases, where all other methods of

A Beginner's Guide to MVS TCP/IP Socket Programming 139

A Beginner's Guide to MVS TCP/IP Socket Programming

identifying your problem have failed.

Both of the traces can only be performed by system personnel. They are
initiated via OBEYFILE TCP/IP commands. The OBEYFILE command can only be
executed from specially authorized users on your MVS system.

11.3 TCP/IP Packet Trace

Packet tracing captures IP packets as they enter or leave the device
drivers, which are part of TCP/IP for MVS. A packet trace shows you the
actual IP packets that are exchanged over the IP network. You can analyze
IP and TCP or UDP headers as well as your own application data.

The tracing function is implemented in the TCP/IP address space for those
device drivers that are part of the TCP/IP address space in the SNALINK
LUO and SNALINK LU6.2 address spaces for the SNALINK devices and finally
in the X.25 address space for the X.25 device driver.

You select what you want to trace via the PKTTRACE command, which is
passed either to the TCP/IP address space via an OBEYFILE command or to
the other device driver address spaces via an MVS console modify command.

The trace data is collected by MVS Generalized Trace Facility (GTF). You
must start a GTF collection address space before you start the actual

packet trace function in TCP/IP:

//GTFTCPIP PROC MEMBER=GTFPARM

//*
//IEFPROC EXEC PGM=AHLGTF, PARM='MODE=EXT, DEBUG=NO, TIME=YES',
// REGION=2280K, DPRTY= (15, 15)

//IEFRDER DD DSN=TCPIP.V3R1l.GTF.TRACE, DISP=SHR
//SYSLIB DD DSN=TCPIP.PROCLIB (&MEMBER.) , DISP=SHR

The IEFRDER DD statement defines the data set that is used to capture the
packet trace records.

The GTF parameters for collection of TCP/IP packet trace records are:

TRACE=USRP
USR= (5E4)
END

In the above example, these parameters are located in
TCPIP.PROCLIB (GTFPARM) .

TCP/IP uses x'5E4' as GTF event identifier. If you only want to collect
the TCP/IP packet trace records in your GTF trace data set, specify the
GTF parameters as above.

When GTF has initialized you can start the actual packet trace function in
TCP/IP. The following example shows the OBEYFILE data set that we used to
start the packet trace function in the TCP/IP address space:

PKTTRACE CLEAR
PKTTRACE PROT=TCP IP=9.67.56.18 DSTPORT=9997 SRCPORT=9997
TRACE PACKET

You can limit the packet trace to certain source or destination ports

using a specific protocol on a certain IP address. Please refer to IBM
TCP/IP for MVS: Customization and Administration Guide, SC31-7134, for

A Beginner's Guide to MVS TCP/IP Socket Programming

140

A Beginner's Guide to MVS TCP/IP Socket Programming

details about the PKTTRACE command.

In the above example all packets that come from port number 9997 or go to
on this host are traced if they come from or go to the

port number 9997
remote host with
the packets that
9997 on our host

After you have started the tracing functions,

IP address 9.67.56.18.

This example was used to trace

were exchanged between a server application bound to port
and a client running on the 9.67.56.18 host.

programs. If your own program produces its own tracing output,
save this output so that you will be able to correlate it with the packet

trace output.

You stop the packet trace again via another OBEYFILE command:

NOTRACE PACKET

After you have stopped the packet trace function in TCP/IP,

the GTF collection address space,

TCP/IP utility program called TRCFMT,
set using your normal IPCS or AMDPRDMP program,
TCP/IP formatting routines for the packet trace records.

//jobname JO
//TRACE EXE

//FMTIN DD
//FMTOUT DD
//SYSTSPRT DD

you execute your application
be sure to

you can stop

and format the GTF trace data set with a

B 1, pgmname, CLASS=A, MSGCLASS=X, NOTIFY=tsouser
C PGM=IKJEFTO01l

//SYSTSIN DD *
TRCFMT PRINT=EBCDIC

/*

*

DSN=TCPIP.V3R1l.GTF.TRACE, DISP=SHR
SYSOUT=*
SYSOUT=

or you can format the GTF trace data
which will invoke the

The FMTIN DD statement identifies the trace data set that you specified on
the GTF collection address space JCL.

The formatting routines format the protocol headers and dumps the user

data area in hexadecimal in either EBCDIC or in ASCII translation

depending on your TRCFMT options.

You can request that TRCFMT formats the packet trace not for print but for
download to a Sniffer Network Analyzer or a DatagLANce* Network Analyzer,
if you prefer to use that instead of a printed report.

Figure 50 shows an example of an IP packet that has been formatted by the
TRCFMT formatting program.

PKT 0000004 DATE=95/02/28 TIME=12:12:02.699893
FROM LINK=IUCLM18A

Ip SRC=9.67.

FRAGOFF=0
TCP SRC=1031

DATA LEN=536
FOFOFOFO
F3404040
FOFOFOFO
F8404040
FOFOFOF1
F3404040

56.18

TTL=60

DST=9997

F1404040
FOFOFOFO
F6404040
FOFOFOFO
F1404040
FOFOFOF1

FOFOFOFO
F4404040
FOFOFOFO
F9404040
FOFOFOF1
F4404040

DEV=IUCV
DST=9.67.56.81
VER=4 HDLEN=5 TOS=X'00' TOTLEN=576
PROTOCOL=TCP
SEQ=903654777
WINDOW=28672 CHECKSUM=X'S8DIF'

ID=22670 FLAGS=B'000'
CHECKSUM=X'A141"
ACK=898100877 HDLEN

URGPTR=0 ACK
F2404040 FOFOFOFO *0000 1
FOFOFOFO0 F5404040 *3 0000 4
F7404040 FOFOFOFO *0000 6
FOFOFOF1 F0404040 *8 0000 9
F2404040 FOFOFOF1 *0001 1
FOFOFOF1 F5404040 *3 0001 4

A Beginner's Guide to MVS TCP/IP Socket Programming

0000 2 0000*

0000 5 *

0000 7 0000*

0001 O *

0001 2 0001~*

0001 5 *

141

A Beginner's Guide to MVS TCP/IP Socket Programming

--more—-—

Figure 50. Sample Packet Trace Output

Each IP packet is printed. The packet number, since the start of the
trace and the absolute timestamp, is included on each packet so you can
calculate elapse time between packets.

The IP header section contains formatted information from the IP header.
In this section you find the source and destination IP address of the
packet, and you find information on the underlying protocol (in this
example it is a TCP segment that is contained within this IP packet).

In the TCP header section you can see the source and destination port
numbers.

This IP packet is a 536 bytes long TCP segment that is sent from port 1031
on IP host 9.67.56.18 to port 9997 on IP host 9.67.56.81.

The samples in EFigure 51 to_Figure 53 show you a successful TCP connection
setup (the so-called three-way handshake sequence).

The client application is located on host 9.67.56.18 and the server
application on host 9.67.56.81 port 9997.

PKT 0000001 DATE=95/02/28 TIME=12:12:02.574173

FROM LINK=IUCLM18A DEV=IUCV

IP SRC=9.67.56.18 DST=9.67.56.81
VER=4 HDLEN=5 TOS=X'00' TOTLEN=44 ID=22668 FLAGS=B'000'
FRAGOFF=0 TTL=60 PROTOCOL=TCP CHECKSUM=X'A357'

TCP SRC=1031 DST=9997 SEQ=903654776 ACK=82487328 HDLEN=6
WINDOW=28672 CHECKSUM=X'E7D5' URGPTR=0 SYN

OPTION=MAX SEG_SIZE SIZE=536

Figure 51. Packet Trace of TCP Connection: SYN Segment

The client TCP protocol layer starts the TCP connection setup when the
client application issues a connect socket call. The first TCP segment
sent is a SYN segment, where the client host advertises its receive TCP
window size and the maximum TCP segment size it is prepared to receive.
In this example, the server host may send segments of maximum 536 bytes to
the client host, and the client host opens a TCP window of 28672 bytes.

The client host chooses its initial sequence number (ISN) for this
connection. This initial value depends on TCP implementation and the
amount of time elapsed since the start of TCP/IP on this host. In this
example, the initial value chosen by the client TCP/IP host is 903654776.

PKT 0000002 DATE=95/02/28 TIME=12:12:02.649455

TO LINK=IUCLM18A DEV=IUCV
IP SRC=9.67.56.81 DST=9.67.56.18
VER=4 HDLEN=5 TOS=X'00' TOTLEN=44 ID=22575 FLAGS=B'000'

A Beginner's Guide to MVS TCP/IP Socket Programming 142

A Beginner's Guide to MVS TCP/IP Socket Programming

FRAGOFF=0 TTL=60 PROTOCOL=TCP CHECKSUM=X'A3B4'
TCP SRC=9997 DST=1031 SEQ=898100876 ACK=903654777 HDLEN=6
WINDOW=28672 CHECKSUM=X'764B' URGPTR=0 ACK SYN

OPTION=MAX SEG_SIZE SIZE=536

Figure 52. Packet Trace of TCP Connection: SYN + ACK Segment

The server host responds with a TCP segment where both the ACK and the SYN
flags are set. This segment acknowledges the FIN segment sent from the
client by returning an ACK sequence number of 903654777, which is the ISN
sent by the client plus one, as the SYN segment itself is defined to
consume one sequence number. The server host chooses its initial sequence
number as 898100876 and advertises its current receive TCP window size and
a maximum TCP segment size of 536 bytes.

PKT 0000003 DATE=95/02/28 TIME=12:12:02.674138

FROM LINK=IUCLM18A DEV=IUCV

IP SRC=9.67.56.18 DST=9.67.56.81
VER=4 HDLEN=5 TOS=X'00' TOTLEN=40 ID=22669 FLAGS=B'000'
FRAGOFF=0 TTL=60 PROTOCOL=TCP CHECKSUM=X'A35A'

TCP SRC=1031 DST=9997 SEQ=903654777 ACK=898100877 HDLEN=5
WINDOW=28672 CHECKSUM=X'8A6C' URGPTR=0 ACK

Figure 53. Packet Trace of TCP Connection: ACK Segment

The last segment exchanged in this connection setup sequence is an ACK
segment from the client acknowledging the SYN + ACK segment from the
server.

The TCP connection is now established and the two socket applications may
begin to exchange data over the socket connection.

For further analysis of packet trace output, we refer you to two excellent
books by W. Richard Stevens: TCP/IP Illustrated Volume 1 by W. Richard
Stevens, SR28-5586, and TCP/IP Illustrated Volume 2 by Gary R. Wright and
W. Richard Stevens, SR28-5630.

11.4 TUCYV Socket API Trace Function

The packet trace component sends its trace records to GTF. This is not
the case with the IUCV socket trace. The socket trace data is written in
formatted form directly to an output data set allocated to the TCP/IP
address space. By default the TCP/IP address space will write the trace
data to a SYSDEBUG DD statement, but you can modify this dynamically via
an OBEYFILE command.

The main issue, when you want to use the socket API trace, is that you can
not limit the trace in any way. When you start the socket API trace, all
socket activity on your TCP/IP system is traced. You have the following
two ways in which you can handle this:

1. You quiesce your TCP/IP system so that all activity except your test
application is brought to a halt. Depending on your environment, this

A Beginner's Guide to MVS TCP/IP Socket Programming 143

A Beginner's Guide to MVS TCP/IP Socket Programming

may or may not be possible.

2. You implement a secondary TCP/IP stack on your MVS system with an IUCV
link connecting it to your primary TCP/IP system. This secondary
TCP/IP system can run completely stripped of anything else, other than
your test application. This was the technique we used in the
ITSO-Raleigh environment to exercise the socket API trace functions.
We ran our test server connected to the secondary TCP/IP system, and
the client connected to the primary TCP/IP system on the same MVS
system. Please refer to MVS TCP/IP V3Rl Implementation Guide,
GG24-3687, for instructions on how you can run two TCP/IP stacks on
the same MVS system.

You start the socket API trace via an OBEYFILE command with the following
content:

FILE 'TCPIP.V3R1l.RAIANJE.B.TRACE'
TRACE SOCKET
MORETRACE SOCKET

The FILE statement instructs the TCP/IP address space to direct trace
output to the specified sequential data set. If the data set already
exists, it will be overwritten. If you allocate the data set in advance,
you must allocate it with RECFM=VB and LRECL=137.

The TRACE statement instructs the TCP/IP address space to start the socket
API trace. If you want the trace output to include the data you send and
receive, you must also specify the MORETRACE statement.

You then start the application you want to trace. Do not run unnecessary
long tests. The amount of trace data can be quite voluminous.

You stop the trace with another OBEYFILE command containing the following:

NOTRACE SOCKET
SCREEN

The NOTRACE statement stops the socket trace.

The SCREEN statement closes and deallocates the trace data set you
specified on the FILE statement when you started your socket trace, and it
returns trace output to the default SYSDEBUG DD allocation.

The trace data set contains formatted trace information ready for print or
browse.

The samples in EFigure 54 to Eigure 61 cover the initial socket calls of an
iterative server. A few of the lines have been split into two lines in
order to make the samples more readable. The extra lines can be
identified by the lack of timestamp and message number.

17:00:55 EZB7254E IUCV API greeter called for ACB 67531840:

17:00:55 EZB6710I IUCV interrupt -> IUCV-API-greeter (from External interrupt handler)

17:00:55 EZB66961I Interrupt type: Pending connection

17:00:55 EZB6697I Path id: 2

17:00:55 EZB6698I Address space: AsIDOOFB, Userl:

17:00:55 EZB7274I IucvAccMsglim: Path ExtInt 2 (No CCB), msgid '6956577', userl 'TCPIP ', user2 'I
msglim 2, retcc 0, iprc

17:00:55 EZB7254E IUCV API greeter called for ACB 67531840:

A Beginner's Guide to MVS TCP/IP Socket Programming 144

A Beginner's Guide to MVS TCP/IP Socket Programming

17:00:55 EZB6710I IUCV interrupt -> IUCV-API-greeter (from External interrupt handler)
17:00:55 EZB66961I Interrupt type: Pending message

17:00:55 EZB6697I Path id: 2

17:00:55 EZB7106I MsgId 6958551, Length 20, TrgCls: 00000000, Reply len 8, Flags 07

17:00:55 EZB7266I IucvReceive: Path ExtInt 2 (No CCB), msgid 6958551, trgcls 00000000, bfadrl 04055:
retcc 0, iprcode 0

17:00:55 EZB5062I 055380: C9E4C3E5 C1D7C940 00020002 D3C1D9C7 €5404040

17:00:55 EZB72551I SkSimpleResponse: Client AsIDOOFB, MsgId 6958551, retcode 0 errno 49

17:00:55 EZB7268I IucvReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958551, trgcls 00000000, bfadr:
bfln2f 8, retcc 0, i

17:00:55 EZB5062I 055500:00000000 00000031

Figure 54. Socket API Trace: INITAPI Call

Figure 54 represents one call. The call type can be determined by
examining the TrgCls field. See_Table 9 for a list of possible values.

The first call is an initapi call, and it results in an initial IUCV
message, that includes:

The maximum number of sockets your program will work with (0002),
which is the value passed on the MAXSOC parameter. The default value
is 50, but you may specify a maximum value of 2000.

The APITYPE (0002).

Your subtask ID (LARGE), which is the wvalue you pass on the SUBTASK
parameter.

The reply message includes the maximum socket descriptor that your
application can use (X'00000031'), which is equal to 49. So even if you
specify a MAXSOC value of 2, your default maximum socket descriptor number
is 49 (lowest is 0 and highest is 49).

17:00:55 EZB7259I Sock-request called for ACB 67531840:

17:00:55 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:00:55 EZB66961I Interrupt type: Pending message

17:00:55 EZB66971I Path id: 2

17:00:55 EZB7106I MsgId 6958552, Length 0, TrgCls: 001E0000, Reply len 48, Flags 87
17:00:55 EZB7107I PrmMsgHi 0, PrmMsglLo O

17:00:55 EZB72561I SkResponse: Client AsIDOOFB, MsgId 6958552, length 40, retcode 0 errno 0

17:00:55 EZB7271I IucvAlReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958552, trgcls 001E0000,
bfadr2 04055570, bfln2f 48, retcc O

17:00:55 EZB7272I Address list:

17:00:55 EZB5062I 0556F8:04055618 00000008 04055490 00000028

17:00:55 EZB7273I Data, length = 8:

17:00:55 EZB5062I 055618:00000000 00000000

17:00:55 EZB7273I Data, length = 40:

17:00:55 EZB5062I 055490: 00000002 C1lA2C9C4 FOFO0C6C2 D3C1D9C7 C5404040 40404040 40404040 40404040

17:00:55 EZB5062I 0554B0: 40404040 40404040

Figure 55. Socket API Trace: GETCLIENTID Call

The TrgCls field tells us that this is a geteclientid call. The returned
data for this call is a client ID structure. The first full-word shows
the protocol domain (2); the next 8 bytes shows the address space name

A Beginner's Guide to MVS TCP/IP Socket Programming 145

(ASIDOOFB)
without interest.

followed

A Beginner's Guide to MVS TCP/IP Socket Programming

by the subtask name (LARGE), and the last 20 bytes are

17:00:55 EZB7259I Sock-request called for ACB 67531840:
17:00:55 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:00:55 EZB66961I Interrupt type: Pending message
17:00:55 EZB6697I Path id: 2
17:00:55 EZB7106I MsgId 6958553, Length 16, TrgCls: 00190000, Reply len 8, Flags 07
17:00:55 EZB7266I IucvReceive: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958553, trgcls 00190000, b
bflnlf 16, retcc O
17:00:55 EZB5062I 055490: 00000002 00000001 00000000 00000000
17:00:55 EZB8251I SkTcpSoc: TCB #1001 allocated for socket 0 on path ExtInt 2 (AsIDOOFB LARGE)
17:00:55 EZB72551I SkSimpleResponse: Client AsIDOOFB, MsgId 6958553, retcode 0 errno 0
17:00:55 EZB7268I IucvReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958553, trgcls 00190000, bfac
bfln2f 8, retcc 0, i
17:00:55 EZB5062I 0556A0: 00000000 00000000
Figure 56. Socket API Trace: SOCKET Call
The TrgCls field tells us that this is a socket call.

The socket call is for a socket in the internet domain (domain 2) using a

stream socket

(protocol 0), which

(socket type 1) and the default protocol for such a socket

for the internet domain is TCP.

The socket descriptor is returned in the RETCODE field as O.

17:00:55 EZB7259I Sock-request called for ACB 67531504:

17:00:55 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)

17:00:55 EZB6718I Timeout: 104200.192 seconds

17:00:55 EZB66961I Interrupt type: Pending message

17:00:55 EZB6697I Path id: 2

17:00:55 EZB7106I MsgId 6958554, Length 16, TrgCls: 00020000, Reply len 8, Flags 07

17:00:55 EZB7266I IucvReceive: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958554, trgcls 00020000, b
bflnlf 16, retcc O

17:00:55 EZB5062I 0554BO: 0002270D 00000000 00000000 00000000

17:00:55 EZB8243I AsIDOOFB *OLDCONN has 0 sockets

17:00:55 EZB8243I AsIDOOFB LARGE has 1 sockets

17:00:55 EzZB8245I Perm=F, AutoCli=F, Local=*~9997, TCB Q = 1

17:00:55 EZB82461I 1001 Closed, Foreign=*~65535

17:00:55 EZB72551I SkSimpleResponse: Client AsIDOOFB, MsgId 6958554, retcode 0 errno 0

17:00:55 EZB7268I IucvReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958554, trgcls 00020000, bfac
bfln2f 8, retcc 0, i

17:00:55 EZB5062I 055668: 00000000 00000000

Figure 57. Socket API Trace: BIND Call

According to the TrgCls field, this is a bind call on socket descriptor O.

The socket is bound to an AF-INET address (2); the port number is 9997

(X'270D"),

and the IP address is any IP address on this host (0).

A Beginner's Guide to MVS TCP/IP Socket Programming 146

A Beginner's Guide to MVS TCP/IP Socket Programming

17:00:55 EZB7259I Sock-request called for ACB 67531504:

17:00:55 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:00:55 EZB6718I Timeout: 104200.192 seconds

17:00:55 EZB66961I Interrupt type: Pending message

17:00:55 EZB6697I Path id: 2

17:00:55 EZB7106I MsgId 6958555, Length 0, TrgCls: 000D0000, Reply len 8, Flags 87
17:00:55 EZB7107I PrmMsgHi 0, PrmMsgLo 10

17:00:55 EZB72551I SkSimpleResponse: Client AsIDOOFB, MsgId 6958555, retcode 0 errno 0

17:00:55 EZB7268I IucvReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958555, trgcls 000D0000, bfac
bfln2f 8, retcc 0, i

17:00:55 EZB5062I 055590: 00000000 00000000

Figure 58. Socket API Trace: LISTEN Call

This call is a listen call on socket descriptor 0.

The backlog queue size is 10, as specified on the BACKLOG parameter on the
listen call.

17:00:55 EZB7259I Sock-request called for ACB 67531504:

17:00:55 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:00:55 EZB6718I Timeout: 104200.192 seconds

17:00:55 EZB66961I Interrupt type: Pending message

17:00:55 EZB6697I Path id: 2

17:00:55 EZB7106I MsgId 6958556, Length 0, TrgCls: 00010000, Reply len 24, Flags 87
17:00:55 EZB7107I PrmMsgHi 0, PrmMsglo 1

17:00:55 EZB7258I SkBlockRequest: Client AsIDOOFB, Msgid 6958556, Retryable T
17:01:15 EZB7259I Sock-request called for ACB 67531840:

17:01:15 EZB67071I PrevACB: 76139288

17:01:15 EZB6708I NextACB: 76139288

17:01:15 EZB7108I QueueHead: 76139288

17:01:15 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:01:15 EZB6718I Timeout: 104200.192 seconds

17:01:15 EZB66961I Interrupt type: Pending message

17:01:15 EZB66971 Path id: 2

17:01:15 EZB7106I MsgId 6958556, Length 0, TrgCls: 00010000, Reply len 24, Flags 87
17:01:15 EZB7107I PrmMsgHi 0, PrmMsglo 1

17:01:15 EZB7258I SkBlockRequest: Client AsIDOOFB, Msgid 6958556, Retryable T
17:01:15 EZB7259I Sock-request called for ACB 67531840:

17:01:15 EZB67071 PrevACB: 76139288

17:01:15 EZB6708I NextACB: 76139288

17:01:15 EZB7108I QueueHead: 76139288

17:01:15 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:01:15 EZB6718I Timeout: 104200.192 seconds

17:01:15 EZB66961I Interrupt type: Pending message

17:01:15 EZB66971 Path id: 2

17:01:15 EZB7106I MsgId 6958556, Length 0, TrgCls: 00010000, Reply len 24, Flags 87
17:01:15 EZB7107I PrmMsgHi 0, PrmMsglo 1

17:01:15 EZB8252I SkTcpAcc: TCB #1001 dequeued for socket 1 on path ExtInt 2 (AsIDOOFB LARGE)

17:01:15 EZB72561I SkResponse: Client AsIDOOFB, MsgId 6958556, length 16, retcode 1 errno 0

17:01:15 EZB7271I IucvAlReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958556, trgcls 00010000, b
bfln2f 24, retcc O

17:01:15 EZB7272I Address 1list:

17:01:15 EZB5062I 055B98: 04055AB8 00000008 040558C9 00000010

17:01:15 EZB7273I Data, length = 8:

A Beginner's Guide to MVS TCP/IP Socket Programming 147

A Beginner's Guide to MVS TCP/IP Socket Programming

17:01:15 EZB5062I 055AB8: 00000001 00000000
17:01:15 EZB7273I Data, length = 16:
17:01:15 EZB5062I 0558C9: 00020417 09433812 00000000 00000000

Figure 59. Socket API Trace: ACCEPT Call

This call is an accept call. The caller is put into a blocked state until
a connection request arrives. The call returns a new socket descriptor in
the RETCODE parameter (socket descriptor 1), and the socket address
structure of the connecting socket, which is an AF_INET socket (2) with
port number 1047 (X'0417') and IP address 9.67.56.18 (X'09433812").

17:01:15 EZB7259I Sock-request called for ACB 67532288

17:01:15 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)

17:01:15 EZB6718I Timeout: 104200.192 seconds

17:01:15 EZB66961I Interrupt type: Pending message

17:01:15 EZB6697I Path id: 2

17:01:15 EZB7106I MsgId 6958598, Length 16777312, TrgCls: 00100001, Reply len 40, Flags 87
17:01:15 EZB7107I PrmMsgHi 0, PrmMsglo 2

17:01:15 EZB8250I SkTcpRea calls IucvAlRply: Client AsIDOOFB, MsgId 6958598, data length 16

17:01:15 EZB7271I IucvAlReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958598, trgcls 00100001, b
bfln2f 40, retcc O

17:01:15 EZB7272I Address 1list:

17:01:15 EZB5062I 055678:0405558C 00000008 0405553C 00000010 040FC1A9 00000010

17:01:15 EZB7273I Data, length = 8:

17:01:15 EZB5062I 05558C: 00000010 00000000

17:01:15 EZB7273I Data, length = 16:

17:01:15 EZB5062I 05553C: 00020417 09433812 00000000 00000000

17:01:15 EZB7273I Data, length = 16:

17:01:15 EZB5062I OFC1lA9: FOFOFOFO0 F1404040 FOFOFOFO F2404040

Figure 60. Socket API Trace: RECEIVE Peek Call

The TrgCls field tells us that this is a receive call on socket descriptor
1. The PrmMsgLo field indicates that this is a receive call with a flag
value of 2, which means it is a MSG_PEEK call.

The peek call returns 16 bytes (X'10'). The socket address structure of
the sender is returned and is equal to the socket that connected in the
preceding accept call (AF_INET, port 1047 and IP address 9.67.56.18).

17:01:15 EZB7259I Sock-request called for ACB 67531616:

17:01:15 EZB6710I IUCV interrupt -> Sock-request (from External interrupt handler)
17:01:15 EZB6718I Timeout: 104280.734 seconds

17:01:15 EZB66961I Interrupt type: Pending message

17:01:15 EZB6697I Path id: 2

17:01:15 EZB7106I MsgId 6958599, Length 580, TrgCls: 00100001, Reply len 8216, Flags 87
17:01:15 EZB7107I PrmMsgHi 0, PrmMsglLo 0

17:01:15 EZB8250I SkTcpRea calls IucvAlRply: Client AsIDOOFB, MsgId 6958599, data length 536

17:01:15 EZB7271I IucvAlReply: Path ExtInt 2 (AsIDOOFB LARGE), msgid 6958599, trgcls 00100001, b
bfln2f 560, retcc

17:01:15 EZB7272I Address 1list:

A Beginner's Guide to MVS TCP/IP Socket Programming 148

17
17

17:

17
17
17
17

17:
17:

17
17
17
17

17:

17
17
17
17

17:

17
17
17
17

:01:
:01:
01:
:01:
:01:
:01:
:01:
01:
01:
:01:
:01:
:01:
:01:
01:
:01:
:01:
:01:
:01:
01:
:01:
:01:
:01:
:01:

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

EZB50621I
EZB72731I
EZB50621I
EZB72731I
EZB50621I
EZB72731I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I
EZB50621I

A Beginner's Guide to MVS TCP/IP Socket Programming

055678: 0405558C 00000008
Data, length = 8:

05558C: 00000218 00000000
Data, length = 16:
05553C: 00020417 09433812
Data, length = 536:
OFC1lA9: FOFOFOFO0 F1404040
OFC1C9: FOFOFOFO F5404040
OFC1E9: FOFOFOFO F9404040
0FC209: FOFOFOF1 F3404040
0FC229: FOFOFOF1 F7404040
0FC249: FOFOFOF2 F1404040
0FC269: FOFOFOF2 F5404040
0FC289: FOFOFOF2 F9404040
OFC2A9: FOFOFOF3 F3404040
0FC2C9: FOFOFOF3 F7404040
OFC2E9: FOFOFOF4 F1404040
0FC309: FOFOFOF4 F5404040
0FC329: FOFOFOF4 F9404040
OFC349: FOFOFOF5 F3404040
0FC369: FOFOFOF5 F7404040
0FC389: FOFOFOF6 F1404040
OFC3A9: FOFOFOF6 F5404040

0405553C 00000010 040FC1lA9

00000000

FOFOFOFO
FOFOFOFO
FOFOFOF1
FOFOFOF1
FOFOFOF1
FOFOFOF2
FOFOFOF2
FOFOFOF3
FOFOFOF3
FOFOFOF3
FOFOFOF4
FOFOFOF4
FOFOFOF5
FOFOFOF5
FOFOFOF5
FOFOFOF6
FOFOFOF6

00000000

F2404040
F6404040
F0404040
F4404040
F8404040
F2404040
F6404040
F0404040
F4404040
F8404040
F2404040
F6404040
F0404040
F4404040
F8404040
F2404040
F6404040

FOFOFOFO
FOFOFOFO
FOFOFOF1
FOFOFOF1
FOFOFOF1
FOFOFOF2
FOFOFOF2
FOFOFOF3
FOFOFOF3
FOFOFOF3
FOFOFOF4
FOFOFOF4
FOFOFOF5
FOFOFOF5
FOFOFOF5
FOFOFOF6
FOFOFOF6

00000218

F3404040
F7404040
F1404040
F5404040
F9404040
F3404040
F7404040
F1404040
F5404040
F9404040
F3404040
F7404040
F1404040
F5404040
F9404040
F3404040
F7404040

Figure 61.

The last call we show in this example is a receive call.
(x'218")

If you need to analyze the socket trace in more detail,

Socket API Trace: RECEIVE Call

is returned to the application.

you can find more

536 bytes

information on the IUCV interface in chapter 8 in IBM TCP/IP for MVS:

FOFOFOFO0 F4404040
FOFOFOFO0 F8404040
FOFOFOF1 F2404040
FOFOFOF1 F6404040
FOFOFOF2 F0404040
FOFOFOF2 F4404040
FOFOFOF2 F8404040
FOFOFOF3 F2404040
FOFOFOF3 F6404040
FOFOFOF4 F0404040
FOFOFOF4 F4404040
FOFOFOF4 F8404040
FOFOFOF5 F2404040
FOFOFOF5 F6404040
FOFOFOF6 F0404040
FOFOFOF6 F4404040

Application Programming Interface Reference, SC31-7187.

| | TrgCls | PrmMsg |

| | | |

| | High Order Bytes | | | |

| | | Low Order | | |

| Call-type | Decimal | Hex | Bytes | MsgHi | MsgLo | Buffer Data :
| | | | | | |

| INITAPI | 0 | 0000 | 0000 | | | Parameters passe
| | | | | | | call

| | | | | | |

| ACCEPT | 1 | 0001 | ssss | 0 | 0 | Socket address :
| | | | | | | remote socket

| | | | | | |

| BIND | 2 | 0002 | ssss | | | Socket address :
| | | | | | | to

| | | | | | |

| CLOSE | 3 | 0003 | ssss | 0 | 0 |

| | | | | | |

| CONNECT | 4 | 0004 | ssss | | | Socket address =
| | | | | | | connect to

| | | | | | |

| FCNTL | 5 | 0005 | ssss | Cmd | Arg |

| | | | | | |

| GETHOSTID | 7 | 0007 | 0000 | 0 | 0 | Host ID of this
| | | | | | | HOME IP address)
| | | | | | |

| GETHOSTNAME | 8 | 0008 | 0000 | 0 | 0 | Host name of thi

A Beginner's Guide to MVS TCP/IP Socket Programming

149

A Beginner's Guide to MVS TCP/IP Socket Programming

| | | | | | |

| GETPEERNAME | 9 | 0009 | ssss | 0 | 0 | Socket address =
| | | | | | | remote socket

| | | | | | |

| GETSOCKNAME | 10 | 000A | ssss | 0 | 0 | Socket address =
| | | | | | | socket

| | | | | | |

| GETSOCKOPT | 11 | 000B | ssss | level | option | Value of option
| | | | | | name |

| | | | | | |

| IOCTL | 12 | 00ocC | ssss | | | Command and argt
| | | | | | |

| SELECT / SELECTX | 13 | 000D | descrip- | | | Select masks

| | | | tor set | | |

| | | | size | | |

| | | | | | |

| READ / READV | 14 | 000E | ssss | 0 | 0 | Received data

| | | | | | |

| RECV / RECVFROM / | 16 | 0010 | ssss | 0 | flags | Received data

| RECVMSG | | | | | I

| | | | | | |

| LISTEN | 19 | 0013 | ssss | 0 | backlog |

| | | | | | queue |

I | | | | | size |

| | | | | | |

| SEND / SENDMSG | 20 | 0014 | ssss | | | Data to be sent
| | | | | | |

| SENDTO | 22 | 0016 | ssss | 0 | 0 | Flags and data t
| | | | | | |

| SETSOCKOPT | 23 | 0017 | ssss | 0 | 0 | Option name and
| | | | | | |

| SHUTDOWN | 24 | 0018 | ssss | 0 | direction |

| | | | | | |

| SOCKET | 25 | 0019 | 0000 | | | Domain, type anc
| | | | | | |

| WRITE / WRITEV | 26 | 001A | ssss | 0 | 0 | Data to be writt
| | | | | | |

| GETCLIENTID | 30 | 001E | 0000 | 0 | 0 | The client ID of
| | | | | | |

| GIVESOCKET | 31 | 001F | ssss | | | Client ID to gix
| | | | | | |

| TAKESOCKET | 32 | 0020 | 0000 | | | Client ID to tal
| | | | | | |

| Note: ssss denotes a socket descriptor number.

|

Table 9. Important IUCV Socket Trace Entry Fields

A.0 Appendix A. Sample Datagram Socket Programs

This appendix contains the following two sets of datagram socket programs:

The first sample datagram application is written in COBOL using the
Sockets Extended call API. This sample consists of a server
("Datagram Socket COBOIL Server Program" in topic A.1l) and a client
("Datagram Socket COBOQOIL Client Program" in topic A.2).

The second sample datagram application is written in C. This sample
consists of a server ("Datagram Socket C Server Program" in topic A.3)
and a client ("Datagram Socket C Client Program" in topic A.4). This

C datagram application is written so the source code can be ported
between 0S/2 and MVS.

A Beginner's Guide to MVS TCP/IP Socket Programming 150

>
i

EE]
o N

>
S

Datagram Socket
Datagram Socket

A Beginner's Guide to MVS TCP/IP Socket Programming

COBOL Server Program
COBOL Client Program
Datagram Socket C Server Program
Datagram Socket C Client Program

A.1 Datagram Socket COBOL Server Program

Identification Division.

*

Name:

Logic:

EoNE N S R SR N RN N SR R

Function:

Interface:

TPIDGSRV — MVS iterative echo server using
Client is TPIDGCLN

UDP protocols.

This server works with datagram sockets.

It waits for incoming datagrams on port 9999.
Received datagrams are echoed back to the
client that sent them.

If a received datagram is a close-down message,

the server terminates itself.

1. Establish server setup
2. Bind datagram socket to local port 9999
3. Receive datagram

If received datagram is a close-down message

TCP/IP address space name via EXEC PARM field.

the server terminates itself.
4. Received datagram is echoed back to UDP
client that sent it.

Returncode: - none -

Written: April 8, 1995 at ITSO Raleigh

Program-id. tpidgsrv.

*

*

Environment Division.

*

*

*

*

Data Division.

*

*

Working-storage Section.

*

* Socket interface function codes

*

01 soket-functions.

02
02
02
02
02
02
02
02

soket—-accept
soket-bind
soket-close
soket-connect
soket—-fcntl
soket—getclientid
soket—-gethostbyaddr
soket—gethostbyname

pic
pic
pic
pic
pic
pic
pic
pic

x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)

value
value
value
value
value
value
value
value

A Beginner's Guide to MVS TCP/IP Socket Programming

'ACCEPT

'BIND

'CLOSE

' CONNECT
'FCNTL
'GETCLIENTID
'GETHOSTBYADDR
' GETHOSTBYNAME

ok ok ok ok ok ok ok ok ok ok Ok Ok Ok ok ok ok ok ok ok ok Ok Ok Ok F * *

151

*

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

A Beginner's Guide to MVS TCP/IP Socket Programming

soket—gethostid
soket—gethostname
soket—-getpeername
soket—-getsockname
soket—-getsockopt
soket—-givesocket
soket—-initapi
soket—-ioctl
soket-listen
soket-read
soket-recv
soket-recvfrom
soket-select
soket-send
soket-sendto
soket-setsockopt
soket-shutdown
soket-socket
soket-takesocket
soket-termapi
soket—-write

pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic

x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)

value 'GETHOSTID
value 'GETHOSTNAME
value 'GETPEERNAME
value 'GETSOCKNAME
value 'GETSOCKOPT
value 'GIVESOCKET
value 'INITAPI
value 'IOCTL

value 'LISTEN
value 'READ

value 'RECV

value 'RECVFROM
value 'SELECT
value 'SEND

value 'SENDTO
value 'SETSOCKOPT
value 'SHUTDOWN
value 'SOCKET
value 'TAKESOCKET
value 'TERMAPI
value 'WRITE

* Work variables

*

01
01
01
01

01

*

errno
retcode
client-ipaddr-dotted
saved—-message-id

88

pic
pic
pic
pic

9(8) binary value zero.
s9(8) binary value zero.

x(15) value space.

x(8)

close—-down-message-received value

saved—-message-id-len

value space.

' *CLSDWN* ' .

pic 9(8) Binary value 8.

* Variables used for the INITAPI call

*

01 maxsoc pic 9(4) Binary Value 2.
01 initapi-ident.
05 tcpname pic x(8) Value space.
05 asname pic x(8) Value space.
01 subtask pic x(8) wvalue space.
01 maxsno pic 9(8) Binary Value 1.
*
* Variables returned by the GETCLIENTID Call
*
01 clientid.
05 clientid-domain pic 9(8) Binary.
05 clientid—-name pic x(8) wvalue space.
05 clientid-task pic x(8) wvalue space.
05 filler pic x(20) value low-value.

*

* Variables used for the SOCKET call

*

01 afinet pic 9(8) Binary Value 2.
01 soctype-datagram pic 9(8) Binary Value 2.
01 proto pic 9(8) Binary Value zero.
01 socket-descriptor pic 9(4) Binary Value zero.
*
* Variables used for the BIND call
*
01 server-socket-address.
05 server—afinet pic 9(4) Binary Value 2.
05 server-port pic 9(4) Binary Value 9999.
05 server-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.

A Beginner's Guide to MVS TCP/IP Socket Programming

152

*

A Beginner's Guide to MVS TCP/IP Socket Programming

* Variables used by the RECVFROM Call

*

01

*

client-socket—-address.

05 client-afinet pic 9(4) Binary Value zero.
05 client-port pic 9(4) Binary Value zero.
05 client-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.

* Buffer and length field for recvfrom and sendto operation

*

01
01
01
01

*

send-request-len pic 9(8) Binary Value zero.
read-request-len pic 9(8) Binary Value zero.
read-buffer pic x(8192) value space.
filler redefines read-buffer.

05 message-id pic x(8).

05 filler pic x(8184).

* recvfrom and sendto flags

*

01
01

*

sendto-flag pic 9(8) Binary value zero.
recvfrom-flag pic 9(8) Binary value zero.

* Error message for socket interface errors

*

01

ezaerror—-msg.

05 filler pic x(9) Value 'Function='.
05 ezaerror-function pic x(16) Value space.

05 filler pic x value ' '.

05 filler pic x(8) Value 'Retcode='.
05 ezaerror-retcode pic ——-99.

05 filler pic x value ' '.

05 filler pic x(9) Value 'Errorno='.
05 ezaerror—errno pic zzz99.

05 filler pic x value ' '.

05 ezaerror-text pic x(50) value ' '.

Linkage Section.

*

01

*

EXEC-parameter-field.
05 parm-11 pic 9(4) Binary.
05 parm—-tcpname pic x(8).

*

Procedure Division using EXEC-parameter-field.

*

*

*

* Initialize socket API

*

If parm-11 < 8 then
Display 'Invalid or missing TCP address space name'

Display ' in EXEC PARM field: PARM=''xxxxxxxx'' '
Go to exit-now
end-if.

Move soket-initapi to ezaerror-function.
Move parm—-tcpname to tcpname.
Call 'TPICLNID' using asname subtask.
Call 'EZASOKET' using soket-initapi
maxsoc
initapi-ident

A Beginner's Guide to MVS TCP/IP Socket Programming

153

*

A Beginner's Guide to MVS TCP/IP Socket Programming

subtask
maxsno
errno
retcode.
If retcode < 0 then
move 'Initapi failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-now.

* Let us see the client-id

*

*

move soket-getclientid to ezaerror-function.
Call 'EZASOKET' using soket-getclientid
clientid
errno
retcode.
If retcode < 0 then
move 'Getclientid failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.
Display 'Client ID = ' clientid-name ' ' clientid-task.

* Get us a datagram socket descriptor

*

*

move soket-socket to ezaerror-function.
Call 'EZASOKET' using soket-socket
afinet
soctype—-datagram
proto
errno
retcode.
If retcode < 0 then
move 'Socket call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.
Move retcode to socket-descriptor.

* Bind socket to our server port number

*

*

* Loop reading and sending client datagrams until
* server receives a datagram that starts with the
* text *CLSDWN* - then we shut down.

*

Move soket-bind to ezaerror-function.
Call 'EZASOKET' using soket-bind
socket-descriptor
server—-socket-address
errno
retcode.
If retcode < 0 then
move 'Bind call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-close-socket.

* F * * *

A Beginner's Guide to MVS TCP/IP Socket Programming

154

A Beginner's Guide to MVS TCP/IP Socket Programming

Perform until close-down-message-received
Display 'Entering new blocking recvfrom call'’
move soket-recvfrom to ezaerror-function
move 8192 to read-request-len
Call 'EZASOKET' using soket-recvfrom

socket-descriptor
recvifrom-flag
read-request-len
read-buffer
client-socket-address
errno
retcode
If retcode < 0 then
move 'Recv-from call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
Call 'TPIINTOA' using client-ipaddr
client-ipaddr-dotted
Display 'Data from ip address ' client-ipaddr-dotted
Display ' and port number ' client-port

Move message-id to saved-message-id
if not close-down-message-received then
Call 'EZACICO5' using saved-message-id
saved—-message-id-len
end-if

If close-down-message-received then
Display 'We received a shut-down message'
else
move soket-sendto to ezaerror-function
move 8192 to send-request-len
Call 'EZASOKET' using soket-sendto
socket-descriptor
sendto-flag
send-request-len
read-buffer
client-socket-address
errno
retcode
If retcode < 0 then
move 'Sendto call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror—-msg-exit
go to exit-close-socket
end-if
end-if
end-perform.

* *
* Close socket *
* *

exit—-close—-socket.
move soket-close to ezaerror-function
Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode.
If retcode < 0 then

A Beginner's Guide to MVS TCP/IP Socket Programming 155

*

move

A Beginner's Guide to MVS TCP/IP Socket Programming

'Close call failed' to ezaerror-text
perform write—-ezaerror-msg thru write-ezaerror-msg-exit.

* Terminate socket API

*

*

exit-term-api.

Call 'EZASOKET' using soket-termapi.

* Terminate program

*

*

*

exit—-now.

move zero to return-code.

Goback.

Subroutine

Write out an error message

write—ezaerror—-msg.
move errno to ezaerror—errno.
move retcode to ezaerror-retcode.
display ezaerror-msg.
write—ezaerror-msg-exit.

exit.

A.2 Datagram Socket COBOL Client Program

ook ok ok ok ok ok ok ok Ok Ok Ok Ok ok Ok Ok ok ok ok Ok Ok F F F

Identification Division.

*

Name:

Function:

Interface:

Logic:

Returncode:

Written:

TPIDGCLN - Client to test MVS Datagram
server TPIDGSRV (UDP protocols).

Sends 8K message to server and receives reply.
If client start option specifies CLOSE, the

client sends a shutdown datagram to the server.

This program uses non-blocking recvfrom calls
in order to implement its own timeout logic
in case the server does not respond to its
request.

CLOSE option in EXEC PARM field

1. Sends datagram to server
2. Reads echoed datagram from server

— none -

April 8, 1995 at ITSO Raleigh

Program-id. tpidgcln.

A Beginner's Guide to MVS TCP/IP Socket Programming

* %k ok F * *

ok ok ok ok ok ok ok ok Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok F F * *

156

A Beginner's Guide to MVS TCP/IP Socket Programming

* *

Environment Division.
* *

* *

Data Division.
* *

Working-storage Section.

* *
* Socket interface function codes *
* *

01 soket-functions.

02 soket-accept pic x(16) value 'ACCEPT .
02 soket-bind pic x(16) value 'BIND ',
02 soket-close pic x(16) value 'CLOSE '
02 soket-connect pic x(16) value 'CONNECT ',
02 soket-fentl pic x(16) value 'FCNTL ',
02 soket-—getclientid pic x(16) value 'GETCLIENTID .

02 soket—gethostbyaddr pic x(16) value 'GETHOSTBYADDR .
02 soket—gethostbyname pic x(16) value 'GETHOSTBYNAME .

02 soket—gethostid pic x(16) value 'GETHOSTID '
02 soket—gethostname pic x(16) value 'GETHOSTNAME .
02 soket-—getpeername pic x(16) value 'GETPEERNAME .
02 soket-—getsockname pic x(16) value 'GETSOCKNAME '
02 soket-—getsockopt pic x(16) value 'GETSOCKOPT '
02 soket—givesocket pic x(16) value 'GIVESOCKET '
02 soket-initapi pic x(16) value 'INITAPI .
02 soket-ioctl pic x(16) value 'IOCTL '
02 soket-listen pic x(16) value 'LISTEN ',
02 soket-read pic x(16) value 'READ '
02 soket-recv pic x(16) value 'RECV '
02 soket-recvfrom pic x(16) value 'RECVFROM ',
02 soket-select pic x(16) value 'SELECT '
02 soket-send pic x(16) value 'SEND '
02 soket-sendto pic x(16) wvalue 'SENDTO '
02 soket-setsockopt pic x(16) value 'SETSOCKOPT '
02 soket-shutdown pic x(16) value 'SHUTDOWN '
02 soket-socket pic x(16) value 'SOCKET '
02 soket-takesocket pic x(16) value 'TAKESOCKET '
02 soket-termapi pic x(16) value 'TERMAPI '
02 soket-write pic x(16) value 'WRITE ',
* *
* Work variables *
* *
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
01 index-counter pic 9(8) binary value zero.
01 buffer-element.
05 buffer-element-nbr pic 9(5).
05 filler pic x(3) value space.
01 server-ipaddr-dotted pic x(15) value space.
01 close-server pic 9(8) Binary value zero.
88 close-server-down value 1.
01 timer-accum pic 9(8) Binary value zero.
01 timer-interval pic 9(8) Binary wvalue 1000.
* *
* Variables used for the INITAPI call *
* *
01 maxsoc pic 9(4) Binary Value 1.

01 initapi-ident.

A Beginner's Guide to MVS TCP/IP Socket Programming 157

A Beginner's Guide to MVS TCP/IP Socket Programming

05 tcpname pic x(8) Value 'T18ATCP'.
05 asname pic x(8) Value space.
01 subtask pic x(8) wvalue space.
01 maxsno pic 9(8) Binary Value 1.
* *
* Variables returned by the GETCLIENTID Call *
* *
01 clientid.
05 clientid-domain pic 9(8) Binary.
05 clientid—-name pic x(8) wvalue space.
05 clientid-task pic x(8) wvalue space.
05 filler pic x(20) value low-value.
* *
* Variables used for the SOCKET call *
* *
01 afinet pic 9(8) Binary Value 2.
01 soctype-datagram pic 9(8) Binary Value 2.
01 proto pic 9(8) Binary Value zero.
01 socket-descriptor pic 9(4) Binary Value zero.
* *
* Variables used for the GETHOSTBYNAME Call *
* *
01 host—-namelen pic 9(8) Binary Value 5.
01 host—-name pic x(5) Value 'mvsl8'.
01 host-entry-addr pic 9(8) Binary Value zero.
* *
* Variables used for the call to EZACICOS8 *
* *
01 host-alias-seq pic 9(4) Binary Value zero.
01 host—addr-seq pic 9(4) Binary Value zero.
01 host—-name-length pic 9(4) Binary Value zero.
01 host—-name-value pic x(255) Value space.
01 host-alias-count pic 9(4) Binary Value zero.
01 host-alias-length pic 9(4) Binary Value zero.
01 host-alias-value pic x(255) Value space.
01 host—addr-type pic 9(4) Binary Value zero.
01 host-addr-length pic 9(4) Binary Value zero.
01 host-addr-count pic 9(4) Binary Value zero.
01 host-addr-value pic 9(8) Binary Value zero.
01 host-return-code pic s9(8) Binary Value zero.
* *
* Server socket address structure *
* *

01 server-socket-address.

05 server—afinet pic 9(4) Binary Value 2.
05 server-port pic 9(4) Binary Value 9999.
05 server-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.
* *
* Variables used for the IOCTL call *
* *
01 ioctl-command-fionbio pic x(4).
01 ioctl-command-string pic x(16) value 'FIONBIO'.
01 ioctl-reqgarg—non-blocking pic 9(8) Binary value 1.
01 ioctl-retarg pic 9(8) binary value zero.
* *
* Buffer and length fields for sendto operation *
* *
01 send-request-length pic 9(8) Binary value zero.
01 send-buffer.
05 send-buffer-total pic x(8192) value space.

05 closedown-message redefines send-buffer-total.

A Beginner's Guide to MVS TCP/IP Socket Programming 158

A Beginner's Guide to MVS TCP/IP Socket Programming

10 closedown-id pic x(8).
10 filler pic x(8184).
05 send-buffer-seq redefines send-buffer-total
pic x(8) occurs 1024 times.

* *

* Buffer and length fields for recvfrom operation *

* *
01 read-request-length pic 9(8) Binary value zero.
01 read-buffer pic x(8192) value space.

* *

* Other fields for sendto and reccfrom operation *

* *
01 sendto-flag pic 9(8) Binary value zero.
01 recvfrom-flag pic 9(8) Binary value zero.

* *

* Error message for socket interface errors *

* *

01 ezaerror-msg.

05 filler pic x(9) Value 'Function='.
05 ezaerror-function pic x(16) Value space.

05 filler pic x value ' '.

05 filler pic x(8) Value 'Retcode='.
05 ezaerror-retcode pic ——-99.

05 filler pic x value ' '.

05 filler pic x(9) Value 'Errorno='.
05 ezaerror—errno pic zzz99.

05 filler pic x value ' '.

05 ezaerror-text pic x(50) value ' '.

Linkage Section.

*

01 EXEC-parameter-field.
05 parm-11 pic 9(4) Binary.
05 parm—-close-option pic x(5).

* *

Procedure Division using EXEC-parameter-field.
* *

If parm-11 = zero then
move zero to close-server.

If parm-11 = 5 and parm-close-option = 'CLOSE' then
move 1 to close-server.

* *
* Initialize send buffer *
* *

perform varying index-counter from 0 by 1
until index-counter > 1023

move index—-counter to buffer-element-nbr

move buffer—-element to send-buffer-seq(index-counter)
end-perform.

* *
* Initialize socket API *
* *

Move soket-initapi to ezaerror-function.

Call 'TPICLNID' using asname subtask.

Call 'EZASOKET' using soket-initapi
maxsoc

A Beginner's Guide to MVS TCP/IP Socket Programming 159

*

A Beginner's Guide to MVS TCP/IP Socket Programming

initapi-ident
subtask
maxsno
errno
retcode.
If retcode < 0 then
move 'Initapi failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-now.

* Let us see the client-id

*

*
*
*

*
*
*

* F * * *

move soket-getclientid to ezaerror-function.
Call 'EZASOKET' using soket-getclientid
clientid
errno
retcode.
If retcode < 0 then
move 'Getclientid failed' to ezaerror-text
perform write—-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.

Display 'Our client ID = ' clientid-name ' ' clientid-task.

Get us a datagram socket descriptor

move soket-socket to ezaerror-function.
Call 'EZASOKET' using soket-socket
afinet
soctype—-datagram
proto
errno
retcode.
If retcode < 0 then
move 'Socket call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.
Move retcode to socket-descriptor.

Get host entry structure pointer based on host name

move soket-gethostbyname to ezaerror-function.
Call 'EZASOKET' using soket-gethostbyname
host-namelen
host-name
host-entry-addr
retcode.
If retcode < 0 then
move 'Gethostbyname failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-close-socket.

Get info out of the HOSTENT structure
As we do not know if server IP address is there, we can
only use the first returned address for our datagram.

A Beginner's Guide to MVS TCP/IP Socket Programming

* F * * *

160

*
*
*

* ok ok ok ok Ok F o *

A Beginner's Guide to MVS TCP/IP Socket Programming

move 'EZACICO8' to ezaerror-function.
Call 'EZACICO8' using host-entry-addr
host-name-length
host-name-value
host-alias—count
host-alias-seq
host-alias-length
host-alias-value
host-addr-type
host-addr-length
host—-addr—-count
host-addr-seq
host-addr—-value
host-return-code.
If host-return-code = -1 then
move host-return-code to retcode

move 'Host translation failed' to ezaerror-text

perform write—-ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if.

Move host-addr-value to server-ipaddr.

Call 'TPIINTOA' using server-ipaddr server-ipaddr-dotted.

Display 'Sending datagram to ' server-ipaddr-dotted.

Send datagram to server

move soket-sendto to ezaerror—function.
move 8192 to send-request-length.
If close-server—-down then
Display 'Sending server shutdown message'
move '*CLSDWN*' to closedown-id.
Call 'EZASOKET' using soket-sendto
socket-descriptor
sendto-flag
send-request-length
send-buffer-total
server—-socket-address
errno
retcode.
If retcode < 0 then
move 'Write call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror—-msg-exit
go to exit-close-socket
end-if.
If close-server—-down then
go to exit-close-socket.

We do not know, if the server is there, so we will not enter
a blocking receive for the echoed datagram. Instead we turn

the socket into non-blocking mode, and enters a loop where we

issue a non-blocking recvfrom call. If no data, we go into

a one second wait and then reissue the recvfrom call.

If we

have not received a reply within 30 seconds, we timeout and

terminate the client.

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok ok ok ok F * *

161

A Beginner's Guide to MVS TCP/IP Socket Programming

Move soket-ioctl to ezaerror-function.
Call 'TPIIOCTL' using ioctl-command-string
ioctl-command-fionbio.
If return-code > zero then
move 'Call to TPIIOCTL failed' to ezaerror-text
perform write—-ezaerror-msg thru
write—ezaerror—-msg-exit
go to exit-close-socket
end-if.
Call 'EZASOKET' using soket-ioctl
socket-descriptor
ioctl-command-fionbio
ioctl-reqgarg-non-blocking
ioctl-retarg
errno
retcode.
If retcode < 0 then
move 'IOCTL call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror—-msg-exit
go to exit-close-socket
end-if.

move 0 to timer-accum.
perform until timer-accum >= 30000
move soket-recvfrom to ezaerror-function
move 8192 to read-request-length
Call 'EZASOKET' using soket-recvfrom
socket-descriptor
recvfrom-flag
read-request-length
read-buffer
server—socket-address
errno
retcode
If retcode < 0 and errno not = 35 then
move 'Recv-from call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
If errno = 35 then
If timer—-accum < 30000 then
Display 'Waiting one second'
add timer-interval to timer-accum
Call 'TPIWAIT' using timer-interval
else
Display 'Timed out before server returned datagram'’
end-if
else
Display 'We have recieved our echoed datagram'
Move 31000 to timer-accum
end-if
end-perform.

* *
* Close socket *
* *

exit—-close—-socket.
move soket-close to ezaerror-function

A Beginner's Guide to MVS TCP/IP Socket Programming 162

A Beginner's Guide to MVS TCP/IP Socket Programming

Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode.
If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit.

* *
* Terminate socket API *
* *

exit-term-api.
Call 'EZASOKET' using soket-termapi.

* *
* Terminate program *
* *
exit-now.

move zero to return-code.

Goback.
* *
* Subroutine. *
K ——————————— *
* *
* Write out an error message *
* *

write—ezaerror—-msg.
move errno to ezaerror—errno.
move retcode to ezaerror-retcode.
display ezaerror-msg.
write—ezaerror-msg-exit.
exit.

A.3 Datagram Socket C Server Program

/* Portable UDP socket server - February 1995 */
f#define WAIT

#include <stdlib.h>
#include <time.h> /* time stamp */

#ifdef MVS

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <inet.h>

#include <socket.h>

#include <errno.h>

#include <tcperrno.h>

#include <dis.h>

f#else

/* On 0S/2, use SO32DLL.LIB TCP32DLL.LIB */
#include <types.h>

#include <sys\socket.h>

#include <netinet\in.h>

#include <nerrno.h> /* sock_errno() */
#define close soclose

A Beginner's Guide to MVS TCP/IP Socket Programming 163

A Beginner's Guide to MVS TCP/IP Socket Programming
#define tcperror psock_errno
#include "d:\rbb\dis.h"
#fendif

#include <netdb.h> /* should not precede #include <manifest.h> on MVS */

#ifdef WAIT
#ifdef MVS

#define wait (text) printf ("Hit <enter> key to continue with " #text ".\n"); getchar();

int yesno(char * what)

{

char answ ;

for (; ;) {
printf ("Enter \'Y\' to continue, \'N\' to stop with %s:",what);
answ =' '|getchar(); /* EBCDIC uppercase translation */
getchar () ; /* absorp enter key */

switch (answ) {
case 'Y': return 1; break;
case 'N': return 0; break;
default: ;
} /* endswitch */
} /* endfor */

}

#felse

#include <conio.h> /* getch() */

#define wait (text) printf ("Hit <any> key to continue with " #text ".\n"); getch();

int yesno(char * what)

{

for (; ;) {
printf ("Enter \'Y\' to continue, \'N\' to stop with %s\n",what);
switch (' '|getch()) { /* ASCII lowercase translation */

case 'y': return 1; break;
case 'n': return 0; break;
default: ;
} /* endswitch */
} /* endfor */
}
#endif
f#else
#define wait (text)
#define yesno (text) once-—-—

int once = 1; /* this only works as there is just one yesno call in the program */

#fendif
/* #define check(x,y) if (y) { psock_errno(x); exit(l); } else printf(x " OK\n");
f#define CHECK(x,y) time (&tl) , check(x,y)

time_t tl1, t2 ;
int check(char *text, int condition) /* if TRUE, error */
{
printf ("%$-8s ", text);
if (condition) {
tcperror ("error");
#ifdef MVS
return errno ;
f#else
return sock_errno() ;
#endif
} else {
time (&t2) ; /* get timestamp in seconds */
printf ("completed in %i seconds.\n",t2-tl);

A Beginner's Guide to MVS TCP/IP Socket Programming

164

A Beginner's Guide to MVS TCP/IP Socket Programming

return 0 ;

} /* endif */

}

int main(int argc,char**argv)

{
int socketNumber ;
int bytesReceived ;
struct sockaddr_in clientAddr ;
struct sockaddr_in localAddr ;

unsigned long bufferSize = 4 ;
char * buffer ;
char * bufferChar ;
struct hostent * hostEnt ;
unsigned short port = 9999 ;
time_t ltime ;
int nameLen=sizeof (struct sockaddr_ in);

setbuf (stdout,NULL); /* don't buffer: don't loose output in case of errors */
setbuf (stderr,NULL); /* should not be necessary ... */

time (&1ltime) ; /* Get timestamp in seconds */

if (arge>l) if (*argv[l]=='?") ({
say (Parameters:\nl. port\n2. receive buffer size);
return O;
} /* endif */
if (argc>1l) if (*argv[l]!='*') port = atoi(argv[l]); disint (port);
if (argc>2) if (*argv[2]!='*') bufferSize = atoi(argv[2]); disint (bufferSize);

if (! (buffer = (char*)malloc (bufferSize+l))) { say(Insufficient storage to allocate receive bui

#ifndef MVS
if (CHECK("sock_init",sock_init())) return -1;
#endif

if (CHECK ("socket", (socketNumber=socket (AF_INET, SOCK_DGRAM, 0))<0)) return -1; /* create datagram

/* bind socket to a local address with bind() call */

localAddr.sin_family = AF_INET ;

localAddr.sin_addr.s_addr = INADDR_ANY ;

localAddr.sin_port htons (port) ;

if (CHECK("bind",bind (socketNumber, (struct sockaddr*)&localAddr, namelLen)<0)) return -1;

/* receive data from client */
while (yesno("RECV")) ({
say (Waiting to receive data);
if (CHECK("recvfrom", (bytesReceived=recvfrom(socketNumber, buffer, bufferSize, 0, (struct sockadd:
printf ("Received from %s port %i (%sAF_INET family).\n",
(hostEnt=gethostbyaddr ((char*) &clientAddr.sin_addr, sizeof (clientAddr.sin_addr) ,AF_INET)) ?hc
clientAddr.sin_port,
clientAddr.sin_family==AF_INET?"":"NOT ");
dislong (bytesReceived) ;
* (buffer+bytesReceived) = 0 ; /* for disstr */
bufferChar = buffer ;
while (*++bufferChar==*buffer) ; /* investigate whether all the same character */
if (bufferChar-buffer==bytesReceived) {
printf ("All characters \'%c\' (X\'%2.2X\') received.\n", *buffer, *buffer);
} else {
disstr (buffer);
} /* endif */
} /* endwhile */

A Beginner's Guide to MVS TCP/IP Socket Programming 165

A Beginner's Guide to MVS TCP/IP Socket Programming

wait (CLOSE) ;
if (CHECK("close",close(socketNumber))) return -1;
return 0 ;

A.4 Datagram Socket C Client Program

/* Portable UDP socket client - February 1995 */
f#define WAIT

#include <stdlib.h>
#include <string.h>
#include <time.h> /* time stamp */

#ifdef MVS

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <inet.h>

#include <socket.h>

#include <errno.h>

#include <tcperrno.h>

#include <dis.h>

f#else

/* On 0S/2, use SO32DLL.LIB TCP32DLL.LIB */
#include <types.h>

#include <sys\socket.h>

#include <netinet\in.h>

#include <nerrno.h> /* sock_errno() */
#define close soclose

#define tcperror psock_errno

#include "d:\rbb\dis.h"

#endif

#include <netdb.h> /* should not precede #include <manifest.h> on MVS */

#ifdef WAIT
#ifdef MVS
#define wait (text) printf ("Hit <enter> key to continue with " #text ".\n"); getchar();
int yesno(char * what)
{

char answ ;

for (; ;) {
printf ("Enter \'Y\' to continue, \'N\' to stop with %s:",what);
answ =' '|getchar(); /* EBCDIC uppercase translation */
getchar () ; /* absorp enter key */

switch (answ) {
case 'Y': return 1; break;
case 'N': return 0; break;
default: ;
} /* endswitch */
} /* endfor */
}
#felse
#include <conio.h> /* getch() */
#define wait (text) printf ("Hit <any> key to continue with " #text ".\n"); getch();
int yesno(char * what)

{

for (; ;) {
printf ("Enter \'Y\' to continue, \'N\' to stop with %s\n",what);
switch (' '|getch()) { /* ASCII lowercase translation */

A Beginner's Guide to MVS TCP/IP Socket Programming 166

A Beginner's Guide to MVS TCP/IP Socket Programming

case 'y': return 1; break;
case 'n': return 0; break;
default: ;
} /* endswitch */
} /* endfor */
}
#endif
ffelse
#define wait (text)
#define yesno (text) once—-—
int once = 1; /* this only works as there is just one yesno call in the program */
#endif

/* #define check(x,y) if (y) { psock_errno(x); exit(l); } else printf(x " OK\n"); */
f#define CHECK(x,y) time(&tl) , check(x,y)

time_t t1, t2 ;
int check (char *text, int condition) /* if TRUE, error */
{
printf ("%$-8s ", text);
if (condition) {
tcperror ("error");

#ifdef MVS
return errno ;
f#else
return sock_errno() ;
#endif
} else {
time (&t2) ; /* get timestamp in seconds */
printf ("completed in %i seconds.\n",t2-tl);
return 0 ;

} /* endif */
}
int main(int argc, char**argv)

{

int socketNumber ;
int bytesSent =0 ;
int bytesToBeSent = 12 ;
char * hostName ;
unsigned long binaryAddress ;
unsigned short serverPort = 9999 ;
unsigned short clientPort = 0 ;
struct sockaddr_in serverAddr ;
struct sockaddr_in fromAddr ;
char * reason ;
struct hostent * hostEnt ;
char * sendBuffer ;
char * receiveBuffer ;
int nameLen = sizeof (struct sockaddr_ in);
time_t ltime ;

setbuf (stdout,NULL); /* don't buffer: don't loose output in case of errors */
setbuf (stderr,NULL); /* should not be necessary ... */

time (&1ltime) ; /* Get timestamp in seconds */
if (arge>l) if (*argv[l]=='?") ({
say (Parameters:\nl. address server (dotted or symbolic)\n2. serverPort\n3. bytes to be sent\n¢

return 0;
} /* endif */

A Beginner's Guide to MVS TCP/IP Socket Programming 167

A Beginner's Guide to MVS TCP/IP Socket Programming

if (arge>1l) if (*argv[l]!='*') hostName = argv[l] ; disstr (hostName);

if (argc>2) if (*argv[2]!='*') serverPort = atoi(argv[2]); disint (serverPort);

if (arge>3) if (*argv[3]!='*') bytesToBeSent = atoi(argv[3]); disint (bytesToBeSent);
if (argc>4) if (*argv[4]!='*') clientPort = atoi(argv[4]); disint (clientPort);

#ifndef MVS
if (CHECK("sock_init",sock_init())) return -1;
#endif

if ((binaryAddress = inet_addr (hostName))==-1) {
if (! (hostEnt=gethostbyname (hostName))) ({
switch (h_errno) {

case HOST_NOT_FOUND : reason = "host not found" ; break;
case TRY_AGAIN : reason = "try again" ; break;
case NO_RECOVERY : reason = "no recovery" ; break;
case NO_DATA : reason = "no data/address" ; break;

/* case NO_ADDRESS : reason = "no address" ; break; */
default: disint (h_errno);reason = "?"

} /* endswitch */
printf ("Gethostbyname for host \"%s\" failed, reason: %s.\n",6 hostName, reason);
return 0 ;
} /* endif */
binaryAddress = * (unsigned long*) *hostEnt->h_addr_ list ;
printf ("Host \"%s\" has address %s\n",hostName , inet_ntoa(* (struct in_addr*)&binaryAddress));
} /* endif */

if (CHECK ("socket", (socketNumber=socket (AF_INET, SOCK_DGRAM, 0))<0)) return -1; /* create datagram

serverAddr.sin_ family = AF_INET ;
serverAddr.sin_addr.s_addr = binaryAddress ;
serverAddr.sin_port = htons (serverPort) ; /* disint (htons (serverAddr.sin_port)); */

/* send message(s) */

while (yesno("SEND")) {
if (! (sendBuffer = (char*)malloc(bytesToBeSent))) { say(Insufficient storage to allocate ser
memset (sendBuffer, 'A',bytesToBeSent) ;
if (CHECK("sendto", (bytesSent=sendto (socketNumber, sendBuffer,bytesToBeSent, 0, (struct sockaddr:
printf ("%1i bytes have been sent.\n",bytesSent);

} /* endwhile */

wait (CLOSE) ;

if (CHECK("close",close(socketNumber))) return -1; /* close socket */
return 0 ;

B.0 Appendix B. Sample Stream Socket Programs

This appendix contains the following two sets of stream socket programs:

One set is written in COBOL using the Sockets Extended call API. This

application consists of a server ("Sample Stream Socket COBOL Server"
in topic B.1l) and a client ("Sample Stream Socket COBOL Client" in
topic B.2). The server is implemented as an iterative server running
in a normal MVS address space. This server is referred to from
Chapter 5, "Your First Socket Program" in topic 5.0.

Another set is written in C. This application consists of a server
("Sample Stream Socket C Server" in topic B.3) and a client ("Sample
Stream Socket C Client" in topic B.4). The C source code is written

so the source code can be ported between MVS and 0S/2.

A Beginner's Guide to MVS TCP/IP Socket Programming 168

A Beginner's Guide to MVS TCP/IP Socket Programming

(o]
—

(o (o8]
{OSH (\V]

Sample Stream Socket COBOL Server
Sample Stream Socket COBOL Client
Sample Stream Socket C Server
Sample Stream Socket C Client

o8}
N

B.1 Sample Stream Socket COBOL Server

Identification Division.

*

Name: TPIIESRV — MVS iterative echo server using
TCP protocols. Client is TPIIECLN.

Function: Each client is required to start the dialog by
sending a sign-on message. Information in the
sign-on message is used to verify the user and
to establish a user security environment via a
call to utility routine: TPIRACF.

The result of sign-on is returned to the client
in a sign-on reply.

The client then sends one or more 8K messages
to the server that are echoed back to the client.
When the client closes the connection, the user
security environment is reset, and the server
enters a new blocking accept call waiting for
the next client.

A client may send a Close—-down message. If it
does, the server asks RACF if the user has
authority to do so via READ access to the

RACF resource class FACILITY resource name
TPIIESRV.CLSDOWN; if OK, the server terminates.

Interface: TCP address space name via EXEC PARM field
Logic: 1. Establish server setup and listen on
port 9997

2. Accept a connection

Receive sign-on message from client

4. Verify user and create task level security
environment

5. Receive data message from client
If message is close-down message and client
user is authorized to close down the server,
server terminates itself.

6. Echo data message back to client

7. Wait for new connect

w

Returncode: - none -
Written: March 8, 1995 at ITSO Raleigh
Modified:

EE I A S R SRR R RN I A SR NN N R SRR R N N N I R
L S S SRR R N N R R S SRR N S S RN

Program-id. tpiiesrv.

* *

Environment Division.

A Beginner's Guide to MVS TCP/IP Socket Programming 169

A Beginner's Guide to MVS TCP/IP Socket Programming

* *

* *

Data Division.
* *

Working-storage Section.

* *
* Socket interface function codes *
* *

01 soket-functions.

02 soket-accept pic x(16) wvalue 'ACCEPT .
02 soket-bind pic x(16) value 'BIND ',
02 soket-close pic x(16) value 'CLOSE '
02 soket-connect pic x(16) value 'CONNECT ',
02 soket-fentl pic x(16) value 'FCNTL ',
02 soket-—getclientid pic x(16) value 'GETCLIENTID .

02 soket—gethostbyaddr pic x(16) value 'GETHOSTBYADDR .
02 soket—gethostbyname pic x(16) value 'GETHOSTBYNAME .

02 soket—gethostid pic x(16) value 'GETHOSTID '
02 soket—gethostname pic x(16) value 'GETHOSTNAME .
02 soket-—getpeername pic x(16) value 'GETPEERNAME .
02 soket-—getsockname pic x(16) value 'GETSOCKNAME '
02 soket-—getsockopt pic x(16) value 'GETSOCKOPT '
02 soket—givesocket pic x(16) value 'GIVESOCKET '
02 soket-initapi pic x(16) value 'INITAPI .
02 soket-ioctl pic x(16) value 'IOCTL '
02 soket-listen pic x(16) value 'LISTEN ',
02 soket-read pic x(16) value 'READ '
02 soket-recv pic x(16) value 'RECV '
02 soket-recvfrom pic x(16) value 'RECVFROM ',
02 soket-select pic x(16) value 'SELECT '
02 soket-send pic x(16) value 'SEND '
02 soket-sendto pic x(16) wvalue 'SENDTO '
02 soket-setsockopt pic x(16) value 'SETSOCKOPT '
02 soket-shutdown pic x(16) value 'SHUTDOWN '
02 soket-socket pic x(16) value 'SOCKET '
02 soket-takesocket pic x(16) value 'TAKESOCKET '
02 soket-termapi pic x(16) value 'TERMAPI '
02 soket-write pic x(16) value 'WRITE ',
* *
* Work variables *
* *
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
01 client-ipaddr-dotted pic x(15) value space.
01 client-type pic x value space.
88 client-is-ascii value 'A'.
88 client-is—-ebcdic value 'E'.
01 client-status pic 9(8) Binary value zero.
88 client-has-closed Value 1.
* *
* Variables used for the INITAPI call *
* *
01 maxsoc pic 9(4) Binary Value 2.
01 initapi-ident.
05 tcpname pic x(8) Value ' '.
05 asname pic x(8) Value space.
01 subtask pic x(8) wvalue space.
01 maxsno pic 9(8) Binary Value zero.
* *
* Variables returned by the GETCLIENTID Call *

A Beginner's Guide to MVS TCP/IP Socket Programming 170

A Beginner's Guide to MVS TCP/IP Socket Programming

01 clientid.

05 clientid-domain pic 9(8) Binary.

05 clientid—-name pic x(8) wvalue space.

05 clientid-task pic x(8) wvalue space.

05 filler pic x(20) value low-value.

*
* Variables used for the SOCKET call

*

01 afinet pic 9(8) Binary Value 2.
01 soctype-stream pic 9(8) Binary Value 1.
01 proto pic 9(8) Binary Value zero.
01 socket-descriptor pic 9(4) Binary Value zero.
*
* Variables used for the BIND Call
*
01 server-socket—address.
05 server—afinet pic 9(4) Binary Value 2.
05 server-port pic 9(4) Binary Value 9997.
05 server-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.

*

* Variables used by the LISTEN Call
*

01 backlog—-queue pic 9(8) Binary Value 10.
*
* Variables used by the ACCEPT Call
*
01 client-socket—-address.
05 client-afinet pic 9(4) Binary Value zero.
05 client-port pic 9(4) Binary Value zero.
05 client-ipaddr pic 9(8) Binary Value zero.
05 filler pic x(8) value low-value.
01 accepted-socket-descriptor pic 9(4) Binary Value zero.
*
* Variables used by the SETSOCKOPT Linger call
*
01 setsockopt-linger pic 9(8) Binary Value 128.
01 setsockopt-value.
05 1linger-on pic 9(8) Binary Value zero.
05 linger-time pic 9(8) Binary Value 5.
01 setsockopt-len pic 9(8) Binary Value 8.
*
* Peek control fields for a peeking RECV call
*
01 recv-flag pic 9(8) Binary value zero.
01 recv-flag-read pic 9(8) Binary value zero.
01 recv-flag-peek pic 9(8) Binary value 2.
*
* Buffer and length field for read operation
*
01 read-request-len pic 9(8) Binary Value zero.
01 read-request-read pic 9(8) Binary Value zero.
01 read-request-remaining pic 9(8) Binary Value zero.

01 read-buffer.
05 read-buffer-total

05 sign-on-message redefines read-buffe
10 sign-on-id pic x(8).

88 message-is—-signon value '*S

10 sign-on-userid pic x(8).

10 sign-on-pwd pic x(8).

10 sign-on—-new-pwd pic x(8).

A Beginner's Guide to MVS TCP/IP Socket Programming

r-total.

IGNON™*' .,

pic x(8192) Value space.

*

171

A Beginner's Guide to MVS TCP/IP Socket Programming

10 sign-on-group pic x(8).
10 filler pic x(8152).
05 close-down-message redefines read-buffer-total.
10 close-down-id pic x(8).
88 message-is—-closedown value '*CLSDWN*'.
10 filler pic x(8184).

05 read-buffer-byte redefines read-buffer-total

*

pic x occurs 8192 times.

* Buffer and length fields for write operation

*

01 send-request-len
01 send-request-sent
01 send-request-remaining
01 send-buffer.
05 send-buffer-total

pic 9(8) Binary value zero.
pic 9(8) Binary value zero.
pic 9(8) Binary value zero.

pic x(8192) value space.

05 sign-on-reply redefines send-buffer-total.

10 sign-on-reply-
10 sign-on-rc
10 filler

05 send-buffer-byte redefines

*

id

pic x(8).

pic 9(4).

pic x(8180).
send-buffer-total

pic x occurs 8192 times.

*

*

* Fields used for calls to TPIAUTH
01 tpiiesrv-cls-resource pic x(80)
value 'TPIIESRV.CLSDOWN'.
01 tpiauth-read pic x(8) value 'READ'.
* Fields used for calls to TPIRACF

*

01 tpiracf-request
01 tpiracf-application
01 tpiracf-rc

*

pic 9(8) Binary value zero.

pic x(8) value 'TPIIESRV'.

pic 9(8) Binary value zero.

* Error message for socket
*

interface errors

01 ezaerror-msg.

05 filler

05 ezaerror-function
05 filler

05 filler

05 ezaerror-retcode
05 filler

05 filler

05 ezaerror—-errno

05 filler

05 ezaerror-text

Linkage Section.

*

01 EXEC-parameter-field.
05 parm-11
05 parm—-tcpname

*

pic x(9) Value 'Function='.

pic x(16) Value space.
pic x value ' '.

pic x(8) Value 'Retcode='.
pic ——-99.

pic x value ' '.

pic x(9) Value 'Errorno='.
pic zzz99.

pic x value ' '.

pic x(50) value ' '.

pic 9(4) Binary.
pic x(8).

*

Procedure Division using EXEC-parameter-field.

*

*

*

* Initialize socket API
*

A Beginner's Guide to MVS TCP/IP Socket Programming

172

A Beginner's Guide to MVS TCP/IP Socket Programming

If parm-11 < 8 then
Display 'Invalid or missing TCP address space name'

Display ' in EXEC PARM field: PARM=''xxxxxxxx'' '
Go to exit-now
end-if.

Move soket-initapi to ezaerror-function.
Move parm—-tcpname to tcpname.
Call 'TPICLNID' using asname, subtask.
Call 'EZASOKET' using soket-initapi
maxsoc
initapi-ident
subtask
maxsno
errno
retcode.
If retcode < 0 then
move 'Initapi failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-now.

* *
* Let us see the client ID *
* *

move soket-getclientid to ezaerror-function.
Call 'EZASOKET' using soket-getclientid
clientid
errno
retcode.
If retcode < 0 then
move 'Getclientid failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.

Display 'Our client ID = ' clientid-name ' ' clientid-task.
* *
* Get us a socket descriptor *
* *

move soket-socket to ezaerror-function.
Call 'EZASOKET' using soket-socket
afinet
soctype-stream
proto
errno
retcode.
If retcode < 0 then
move 'Socket call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.
Move retcode to socket-descriptor.

* *
* Bind socket to our server port number *
* *

Move soket-bind to ezaerror-function.
Call 'EZASOKET' using soket-bind
socket-descriptor
server—socket—-address
errno

A Beginner's Guide to MVS TCP/IP Socket Programming 173

A Beginner's Guide to MVS TCP/IP Socket Programming

retcode.
If retcode < 0 then
move 'Bind call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-close-socket.

* *
* Issue passive open via Listen call *
* *

move soket-listen to ezaerror-—function.
Call 'EZASOKET' using soket-listen
socket-descriptor
backlog-queue
errno
retcode.
If retcode < 0 then
move 'Listen call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-close-socket.

* *

* Start iterative server loop with a blocking Accept Call
* *

iterative-server-loop.

move soket-accept to ezaerror-—function.
Call 'EZASOKET' using soket-accept
socket-descriptor
client-socket-address
errno
retcode.
If retcode < 0 then
move 'Accept call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-close-socket.
Move retcode to accepted-socket-descriptor.
Call 'TPIINTOA' using client-ipaddr client-ipaddr-dotted.
Display '***** New client connection ****x!',

Display 'Client IP address = ' client-ipaddr-dotted.

Display ' and port number = ' client-port.
* *
* Peek at first 8 bytes of client data *
* *

Move 8 to read-request-len.
Move recv-flag-peek to recv-flag.
Perform read-TCP thru read-TCP-exit.
If retcode = zero then
Go to exit-close—a-socket.
If message-is—-signon then
move 'E' to client-type
else
Call 'EZACICO5' using read-buffer
read-request-read
If message-is-signon then
move 'A' to client-type
else
Display 'First message from client is not sign-on'
Go to exit-close-a-socket

A Beginner's Guide to MVS TCP/IP Socket Programming 174

A Beginner's Guide to MVS TCP/IP Socket Programming

end-if
end-if.
* *
* Receive signon message and issue RACF Verify wvia TPIRACF *
* *

Move 40 to read-request-len.
Move recv-flag-read to recv-flag.
Perform read-TCP thru read-TCP-exit.
If retcode = zero then
Go to exit-close—a-socket.
If client-is-ascii then
Call 'EZACICO5' using read-buffer
read-request-read
end-if.
Move zero to tpiracf-request.
Call 'TPIRACF' using tpiracf-request
sign-on-userid
sign-on-pwd
sign-on—-new-pwd
sign-on-group
tpiracf-application.
Move return-code to tpiracf-rc.
Move '*SIGNON*' to sign-on-reply-id.
Move tpiracf-rc to sign-on-rc.
Move 12 to send-request-len.
if client-is-ascii then
Call 'EZACICO4' using send-buffer
send-request-len
end-if.
Perform send-TCP thru send-TCP-exit.
if tpiracf-rc > 0 then

Display 'Sign-on failed for user = ' sign-on-userid
Display ' RACF RC = ' tpiracf-rc
Go to exit-close-a-socket
end-if.
Display 'Sign-on successfull for user = ' sign-on-userid.
* *
* Read 8192 block of client-data *
* *

Move 0 to client-status.
Perform until client-has-closed
move 8192 to read-request-len
Perform read-TCP thru read-TCP-exit
If retcode = 0 then
Move 1 to client-status
else
Display 'Received 8K message from client'
If client-is-ascii then
Call 'EZACICO5' using read-buffer
read-request-read
end-if

If message-is—closedown then
Display 'We recived a close-down message'
Call 'TPIAUTH' using tpiiesrv-cls-resource
tpiauth-read
If return-code = 0 then
Go to exit-close-socket

A Beginner's Guide to MVS TCP/IP Socket Programming 175

A Beginner's Guide to MVS TCP/IP Socket Programming

else
Display 'User is not authorized to close server'
end-if
end-if
* *
* Echo data back to client *
* *

Move read-buffer to send-buffer
If client-is-ascii then
Call 'EZACICO04' using read-buffer
read-request-read
end-if
move 8192 to send-request-len
Perform send-TCP thru send-TCP-exit
Display 'Echoed back 8K message to client'
end-if
end-perform.

Delete security environment and close socket
Set 5 seconds linger time before close

* * * *
* * * *

exit-delete-sec-env.
Move 8 to tpiracf-request.
Call 'TPIRACF' using tpiracf-request.
exit-close—-a-socket.
move soket-setsockopt to ezaerror—function.
Call 'EZASOKET' using soket-setsockopt
accepted-socket-descriptor
setsockopt-linger
setsockopt-value
setsockopt-len
errno
retcode.
If retcode < 0 then
move 'Setsockopt Linger call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
Go to exit-close-socket.

move soket-close to ezaerror-function

Call 'EZASOKET' using soket-close
accepted-socket-descriptor
errno
retcode.

If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
Go to exit-close-socket.

Display 'Finished processing one client'.

Go to iterative-server-loop.

* *

* Close listener socket and terminate *
* *

exit—-close—-socket.
move soket-close to ezaerror-function
Call 'EZASOKET' using soket-close
socket-descriptor

A Beginner's Guide to MVS TCP/IP Socket Programming 176

A Beginner's Guide to MVS TCP/IP Socket Programming

errno
retcode.
If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit.
Display 'Listener socket closed'.

*

* Terminate socket API
*

exit-term-api.
Call 'EZASOKET' using soket-termapi.

*

* Terminate program
*

exit—-now.
move zero to return-code.
Goback.

*

* Write out an error message
*

write—ezaerror—-msg.
move errno to ezaerror—errno.
move retcode to ezaerror-retcode.
display ezaerror-msg.
write—ezaerror-msg-exit.
exit.

*

Subroutine:

*

Read data from a TCP connection

Read-TCP.
move soket-recv to ezaerror-function.
move zero to read-request-read.
move read-request-len to read-request-remaining.
Perform until read-request-remaining = 0
Call 'EZASOKET' using soket-recv
accepted-socket-descriptor
recv-flag
read-request-remaining
read-buffer-byte (read-request-read + 1)
errno
retcode
If retcode < 0 then
move 'Read call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-delete-sec-env
end-if
Add retcode to read-request-read
Subtract retcode from read-request-remaining
If retcode = 0 then
Move zero to read-request-remaining

A Beginner's Guide to MVS TCP/IP Socket Programming

* %k ok F * *

177

A Beginner's Guide to MVS TCP/IP Socket Programming

Display 'Client closed socket connection'

end-if
end-perform.

Read-TCP—-exit.

exit.
*
* Subroutine:
[R —
*
* Send data over a socket connection
*
Send-TCP.
move soket-write to ezaerror-function.
move send-request-len to send-request-remaining.
move 0 to send-request-sent.
Perform until send-request-remaining = 0
Call 'EZASOKET' using soket-write
accepted-socket-descriptor
send-request-remaining
send-buffer-byte (send-request-sent + 1)
errno
retcode
If retcode < 0 then
move 'Write call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-delete-sec-env
end-if
add retcode to send-request-sent

subtract retcode from send-request-remaining

If
en
end-p

Send-TCP-
exit.

retcode = 0 then

Display 'Client closed socket connection'
Move zero to send-request-remaining
d-if
erform.

exit.

B.2 Sample Stream Socket COBOL Client

Identific

ation Division.
*

Name:

Function

* ok ok ok ok ok Ok Ok ok ok Ok Ok F * * *

Interfac

A Beginner's Guide to

TPIIECLN - Client to test MVS iterative

server TPIIESRV (TCP protocols).

: This program connects to server on port 9997
and sends a sign-on message including userid,
password, optional new password and group id.
Client receives sign-on reply. If sign-on is OK
client sends 8K messages and receives them back

from the server.

If client EXEC PARM startup option is CLOSE, the
client sends a server close-down message.

e: Optional CLOSE option in JCL EXEC PARM field.

MVS TCP/IP Socket Programming

* %k ok F * *

* ok ok ok ok ok ok Ok Ok Ok Ok F F * *

178

A Beginner's Guide to MVS TCP/IP Socket Programming

* *

* Logic: 1. Connects to server *

* 2. Sends sign-on message to server *

* 3. receives sign-on reply from server *

* 4. Sends data message to server *

* 5. Receives data message from server *

* 6. terminates *

* *

* Returncode: - none - *

* *

* Written: April 8, 1995 at ITSO Raleigh *

* *

* Modified: *

* *

* *

Program-id. tpiiecln.

* *

Environment Division.

* *

* *

Data Division.

* *

Working-storage Section.

* *

* Socket interface function codes *

* *

01 soket-functions.

02 soket-accept pic x(16) value 'ACCEPT '
02 soket-bind pic x(16) value 'BIND '
02 soket-close pic x(16) value 'CLOSE '
02 soket-connect pic x(16) value 'CONNECT ',
02 soket-fentl pic x(16) value 'FCNTL ',
02 soket-—getclientid pic x(16) value 'GETCLIENTID .
02 soket—gethostbyaddr pic x(16) value 'GETHOSTBYADDR .
02 soket—gethostbyname pic x(16) value 'GETHOSTBYNAME .
02 soket—gethostid pic x(16) value 'GETHOSTID '
02 soket—gethostname pic x(16) value 'GETHOSTNAME .
02 soket-—getpeername pic x(16) value 'GETPEERNAME .
02 soket-—getsockname pic x(16) value 'GETSOCKNAME .
02 soket-—getsockopt pic x(16) value 'GETSOCKOPT '
02 soket—givesocket pic x(16) value 'GIVESOCKET '
02 soket-initapi pic x(16) value 'INITAPI ',
02 soket-ioctl pic x(16) value 'IOCTL '
02 soket-listen pic x(16) value 'LISTEN ',
02 soket-read pic x(16) value 'READ '
02 soket-recv pic x(16) value 'RECV '
02 soket-recvfrom pic x(16) value 'RECVFROM ',
02 soket-select pic x(16) value 'SELECT '
02 soket-send pic x(16) value 'SEND '
02 soket-sendto pic x(16) wvalue 'SENDTO '
02 soket-setsockopt pic x(16) value 'SETSOCKOPT '
02 soket-shutdown pic x(16) value 'SHUTDOWN ',
02 soket-socket pic x(16) value 'SOCKET '
02 soket-takesocket pic x(16) value 'TAKESOCKET '
02 soket-termapi pic x(16) value 'TERMAPI '
02 soket-write pic x(16) value 'WRITE ',

* *

* Work variables *

A Beginner's Guide to MVS TCP/IP Socket Programming 179

A Beginner's Guide to MVS TCP/IP Socket Programming

01
01
01

01

01

01
01

*

9(8) binary value zero.
s9(8) binary value zero.

x(3) value space.

9(8) binary value zero.

errno pic
retcode pic
buffer-element.

05 buffer-element-nbr pic 9(5).
05 filler pic
index-counter pic
connect-status pic

88 connect-done

9(4) Binary value zero.
value 1.

server—ipaddr-dotted

close-server

88 send-close-server

pic x(15) value space.

pic 9(8)

value 1.

Binary value zero.

* Variables used for the INITAPI call

*

01 maxsoc pic 9(4) Binary Value 1.
01 initapi-ident.
05 tcpname pic x(8) Value 'T18BTCP'.
05 asname pic x(8) Value space.
01 subtask pic x(8) wvalue space.
01 maxsno pic 9(8) Binary Value 1.
*
* Variables returned by the GETCLIENTID Call
*
01 clientid.
05 clientid-domain pic 9(8) Binary.
05 clientid—-name pic x(8) wvalue space.
05 clientid-task pic x(8) wvalue space.

*

05 filler

pic x(20) value low-value.

* Variables used for the

*

SOCKET call

01
01
01
01

*

afinet pic 9(8)
soctype-stream pic 9(8)
proto pic 9(8)
socket—-descriptor pic 9(4)

Binary Value 2.
Binary Value 1.

Binary Value zero.
Binary Value zero.

* Variables used for the

*

GETHOSTBYNAME Call

01
01
01

*

host—-namelen pic 9(8)
host-name pic x(5)
host—-entry-addr pic 9(8)

Binary Value 5.
Value 'mvsl8'.

Binary Value zero.

* Variables used for the

*

call to EZACICOS8

01
01
01
01
01
01
01
01
01
01
01
01

*

host—-alias-seq pic 9(4)
host—addr-seq pic 9(4)
host-name-length pic 9(4)

host—-name-value
host—-alias-count
host-alias-length
host-alias-value

Binary Value zero.
Binary Value zero.
Binary Value zero.

pic x(255) Value space.

pic 9(4)
pic 9(4)

Binary Value zero.
Binary Value zero.

pic x(255) Value space.

host—addr-type pic 9(4)
host-addr-length pic 9(4)
host—-addr-count pic 9(4)
host—addr-value pic 9(8)

host-return-code

Binary Value zero.
Binary Value zero.
Binary Value zero.
Binary Value zero.
pic s9(8) Binary Value zero.

* Variables used for the CONNECT Call

*

01

server—-socket—-address.

05 server-afinet

pic 9(4)

A Beginner's Guide to MVS TCP/IP Socket Programming

Binary Value 2.

*

*
*
*

180

*

A Beginner's Guide to MVS TCP/IP Socket Programming

05 server-port
05 server-ipaddr
05 server-reserved

pic 9(4) Binary Value 9997.
pic 9(8) Binary Value zero.

pic x(8) value low-value.

* Buffer and length field for read operation

*

01
01
01
01
01

*

recv-flag
read-request-len
read-request-read
read-request-remaining
read-buffer.

05 read-buffer-total

pic 9(8) Binary Value zero.
pic 9(8) Binary Value zero.
pic 9(8) Binary Value zero.
pic 9(8) Binary Value zero.

pic x(8192) Value space.

05 sign-on-reply redefines read-buffer-total.

10 sign-on-reply-id

88 message-is-reply

10 sign-on-rc
10 filler

pic x(8).

value '*SIGNON*'.
pic 9(4).

pic x(8180).

05 read-buffer-byte redefines read-buffer-total

pic x occurs 8192 times.

* Buffer and length fields for write operation

*

01
01
01
01

*

send-request-len
send-request-sent
send-request-remaining
send-buffer.

05 send-buffer-total

pic 9(8) Binary value zero.
pic 9(8) Binary value zero.
pic 9(8) Binary value zero.

pic x(8192) value space.

05 sign-on-message redefines send-buffer-total.

10 sign-on-message-id
10 sign-on-userid

10 sign-on-pwd

10 sign-on—-new-pwd

10 sign-on-group

10 filler

pic x(8).
pic x(8).
pic x(8).
pic x(8).
pic x(8).
pic x(8152).

05 close-down-message redefines send-buffer-total.
10 close-down-message-id pic x(8).

10 filler

pic x(8184).

05 send-buffer-seq redefines send-buffer-total

pic x(8) occurs 1024 times.

05 send-buffer-byte redefines send-buffer-total

pPic x occurs 8192 times.

* Error message for socket interface errors

*

01

ezaerror—-msg.

05 filler

05 ezaerror-function
05 filler

05 filler

05 ezaerror-retcode
05 filler

05 filler

05 ezaerror—-errno

05 filler

05 ezaerror-text

Linkage Section.

*

01

EXEC-parameter-field.
05 parm-11
05 parm-close-option

pic x(9) Value 'Function='.

pic x(16) Value space.

pic x value ' '.

pic x(8) Value 'Retcode='.
pic ——-99.

pic x value ' '.

pic x(9) Value 'Errorno='.
pic zzz99.

pic x value ' '.

pic x(50) value ' '.

pic 9(4) Binary.
pic x(5).

A Beginner's Guide to MVS TCP/IP Socket Programming

181

A Beginner's Guide to MVS TCP/IP Socket Programming

* *

Procedure Division using EXEC-parameter-field.
* *

If parm-11 < 5 then
move zero to close-server
else
If parm-close-option = 'CLOSE' then
move 1 to close-server

end-if
end-if.
* *
* Initialize socket API *
* *

Move soket-initapi to ezaerror-function.
Call 'TPICLNID' using asname subtask.
Call 'EZASOKET' using soket-initapi
maxsoc
initapi-ident
subtask
maxsno
errno
retcode.
If retcode < 0 then
move 'Initapi failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-now.

* *
* Let us see the client-id *
* *

move soket-getclientid to ezaerror-function.
Call 'EZASOKET' using soket-getclientid
clientid
errno
retcode.
If retcode < 0 then
move 'Getclientid failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.

Display 'Our client ID = ' clientid-name ' ' clientid-task.
* *
* Get host entry structure pointer based on host name *
* *

move soket-gethostbyname to ezaerror-function.
Call 'EZASOKET' using soket-gethostbyname
host-namelen
host-name
host-entry-addr
retcode.
If retcode < 0 then
move 'Gethostbyname failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.

* *
* Get IP addresses out of the HOST Entry structure. *

A Beginner's Guide to MVS TCP/IP Socket Programming 182

A Beginner's Guide to MVS TCP/IP Socket Programming

* *
* Loop pulling IP addresses out of the host entry structure, *
* getting a socket and trying to connect to IP address. *
* *
* Loop untill the returned list of IP addresses is *
* exhausted or a connect is succesful *
* *
Move zero to connect-status.
Perform until ((host—addr-count = host-addr-seq and
host—-addr-seq > 0) or
connect-done)
If host-alias-seq > host-alias-count then
subtract 1 from host-alias-seq
end-if
move 'EZACICO08' to ezaerror-function
Call 'EZACICO8' using host-entry-addr
host-name-length
host-name-value
host-alias-count
host-alias-seq
host-alias-length
host-alias-value
host-addr-type
host-addr-length
host—-addr-count
host-addr-seq
host-addr-value
host-return-code
If host-return-code < 0 then
move host-return-code to retcode
move 'Host translation failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
Move host-addr-value to server-ipaddr
* *
* Get an AF_INET socket to use for connect *
* *
move soket-socket to ezaerror-function
Call 'EZASOKET' using soket-socket
afinet
soctype—-stream
proto
errno
retcode
If retcode < 0 then
move 'Socket call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-term-api
end-if
Move retcode to socket-descriptor
* *

* Try to connect to iterative server on returned IP address *
* *

If host-return-code = 0 then

A Beginner's Guide to MVS TCP/IP Socket Programming 183

A Beginner's Guide to MVS TCP/IP Socket Programming

Move soket-connect to ezaerror-function
Call 'TPIINTOA' using server-ipaddr
server—-ipaddr-dotted
move 2 to server-afinet
move low-value to server-reserved
move 9997 to server-port
Call 'EZASOKET' using soket-connect
socket-descriptor
server—-socket-address
errno
retcode
If retcode < 0 then
Move space to ezaerror-text
Call 'TPIINTOA' using server-—ipaddr
ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror—-msg-exit
move soket-close to ezaerror-function
Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode
If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
Go to exit-term-api

end-if
else
move 1 to connect-status
end-if
end-if

end-perform.

if not connect-done then
move 'Connection-loop' to ezaerror—function
move 'Connect failed' to ezaerror-text
perform write—ezaerror-msg thru

write—ezaerror—-msg-exit

Go to exit-term-api.

Display 'Connected to server at ' server-ipaddr-dotted.

* % ok F * *

Send sign-on message to server

In this sample code, user id and password are hardcoded.
In a real application, we would prompt the client user for
these values.

Move
Move
Move
Move
Move
Move

'*SIGNON*' to sign—-on-message-id.
'USERXX' to sign-on-userid.
'?2?2?22??' to sign-on-pwd.

space to sign-on—new-pwd.

space to sign-on-group.

40 to send-request-len.

Perform send-TCP thru send-TCP-exit.
If retcode = 0 then
Go to exit-close-socket.

*

* ok ok F * *

* Receive

sign-on reply from server

A Beginner's Guide to MVS TCP/IP Socket Programming

184

A Beginner's Guide to MVS TCP/IP Socket Programming

* *

Move 12 to read-request-len.
Perform read-TCP thru read-TCP-exit.
If retcode = 0 then
Go to exit-close-socket.
If sign-on-rc not = 0 then
Display 'Sign-on was unsuccessful'
Go to exit-close-socket

else
Display 'Successful sign-on, user = ' sign-on-userid
end-if.
* *
* Initialize send buffer *
* *

perform varying index-counter from 0 by 1
until index-counter > 1023

move index—-counter to buffer-element-nbr

move buffer—-element to send-buffer-seq(index-counter)
end-perform.

*

* If we are asked to close server down, we send a closedown

* message and do not expect a response.
*

* * * *

If send-close-server then
Display 'Sending close-down message to server'
move '*CLSDWN*' to close-down-message-id
end-if.

move 8192 to send-request-len.

Perform send-TCP thru send-TCP-exit.
If send-close-server then

Go to exit-close-socket.
If retcode = 0 then

Go to exit-close-socket
else

Display '8K Message sent to server'
end-if.

* *

* Read server response *
* *

move 8192 to read-request-len.

Perform read-TCP thru read-TCP-exit.
If retcode = 0 then
Go to exit-close-socket
else
Display 'Server returned 8K message'
end-if.

* *

* Close socket *
* *

exit-close—-socket.

A Beginner's Guide to MVS TCP/IP Socket Programming 185

A Beginner's Guide to MVS TCP/IP Socket Programming

move soket-close to ezaerror-function
Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode.
If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write—-ezaerror-msg thru write-ezaerror-msg-exit.

*

* Terminate socket API
*

exit-term-api.
Call 'EZASOKET' using soket-termapi.

*

* Terminate program
*

exit—-now.
move zero to return-code.
Goback.

*

Subroutine.

*

Write out an error message

write—ezaerror—-msg.
move errno to ezaerror—errno.
move retcode to ezaerror-retcode.
display ezaerror-msg.
write—ezaerror-msg-exit.
exit.

*

Subroutine:

*

Read data from socket connection

Read-TCP.
move soket-recv to ezaerror-function.
move zero to read-request-read.
move read-request-len to read-request-remaining.
Perform until read-request-remaining = 0
Call 'EZASOKET' using soket-recv
socket—-descriptor
recv-flag
read-request-remaining
read-buffer-byte (read-request-read + 1)
errno
retcode
If retcode < 0 then
move 'Read call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok F * *

* ok ok F * *

186

A Beginner's Guide to MVS TCP/IP Socket Programming

end-if

Add retcode to read-request-read

Subtract retcode from read-request-remaining

If retcode = 0 then
Display 'Server closed socket connection'
Move zero to read-request-remaining

end-if

end-perform.
Read-TCP-exit.

exit.
* *
* Subroutine: *
K e—————————— *
* *
* Send data over socket connection *
* *

Send-TCP.
move soket-write to ezaerror-function.
move send-request-len to send-request-remaining.
move 0 to send-request-sent.
Perform until send-request-remaining = 0
Call 'EZASOKET' using soket-write
socket-descriptor
send-request-remaining
send-buffer-byte (send-request-sent + 1)
errno
retcode
If retcode < 0 then
move 'Write call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
add retcode to send-request-sent
subtract retcode from send-request-remaining
If retcode = 0 then
Display 'Server closed socket connection'
Move zero to send-request-remaining
end-if
end-perform.
Send-TCP-exit.
exit.

B.3 Sample Stream Socket C Server

/* Portable socket server - (C) IBM - 1995 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef MVS

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <inet.h>

#include <socket.h>

#include <errno.h> /* required to make "errno" variable available */
#include <tcperrno.h>

#define tcperrno errno

A Beginner's Guide to MVS TCP/IP Socket Programming 187

A Beginner's Guide to MVS TCP/IP Socket Programming

f#else

/* On 0S/2, use SO32DLL.LIB TCP32DLL.LIB */
#define MAX SEND_RECV 32767

#include <types.h>

#include <sys\socket.h>

#include <netinet\in.h>

#include <nerrno.h> /* sock_errno() */

#define close soclose
#define tcperror psock_errno
#define tcperrno sock_errno ()
#endif

#include <netdb.h> /* should not precede #include <manifest.h> on MVS */

int check(char *text, int condition) /* if TRUE, error */
{
printf ("%$-9s ", text);
if (condition) {
tcperror ("error");
return tcperrno ;
} else {
printf ("completed OK.\n");
return 0 ;
} /* endif */

int sendRecord (int socketId , char * recordBuffer , unsigned long recordLength)

{

int bytesSent =0 ;
int bytesToBeSent ;
char * remainingData = recordBuffer ;
int remainingBytes = recordLength ;

while (remainingBytes >0) {
#ifdef MAX_ SEND_RECV
bytesToBeSent = min(remainingBytes,MAX SEND_RECV) ;

f#else

bytesToBeSent = remainingBytes ;

#endif

if (check("send", (bytesSent=send(socketId, remainingData,bytesToBeSent,0))<0)) return 1;
if (!'bytesSent) { printf ("Connection broken while sending.\n"); return 1 ; }

printf ("%i bytes have been sent.\n",bytesSent);

remainingBytes —-= bytesSent ;

remainingData += bytesSent ;
} /* endwhile */
printf ("Complete record sent.\n");
return 0 ;

int receiveRecord (int socketId , char * recordBuffer , unsigned long recordLength)

{

int bytesReceived =0 ;
int bytesToBeReceived ;
char * remainingData = recordBuffer ;
int remainingBytes = recordLength ;

while (remainingBytes >0) {
#ifdef MAX_ SEND_RECV
bytesToBeReceived = min(remainingBytes, MAX SEND_RECV) ;
ffelse

A Beginner's Guide to MVS TCP/IP Socket Programming 188

A Beginner's Guide to MVS TCP/IP Socket Programming

bytesToBeReceived = remainingBytes ;

#endif

if (check("recv", (bytesReceived=recv (socketId, remainingData,bytesToBeReceived, 0))<0)) {
return 1;

} /* endif */

if (!bytesReceived) { printf ("Connection broken while receiving.\n"); return 1 ; }

printf ("%i bytes have been received.\n",bytesReceived);

remainingBytes —-= bytesReceived ;

remainingData += bytesReceived ;
} /* endwhile */
printf ("Complete record received.\n");
return 0 ;

}

int main(int argc,char**argv)

{
int socketId ;
int newSocket ;
struct sockaddr_in localAddress ;
struct sockaddr_in clientAddress ;

char * buffer ;
unsigned long recordLength = 80 ;
unsigned short port=9999 ;
struct hostent * hostEnt ;
int namelen=sizeof (struct sockaddr_in);

setbuf (stdout,NULL); /* don't buffer: don't loose output in case of errors */

if (arge>l) if (*argv[l]=='?") ({
printf ("Parameters:\n"
"l. port (default 9999)\n"
"2. expected number of bytes (default 80).\n");
return O;
} /* endif */

if (arge>1l) if (*argv[l]!='*') port = atoi(argv[l]);
if (argc>2) if (*argv[2]!='*') recordLength = atoi(argv[2]);

printf ("port $i\n"
"record length = %i\n"
, port
, recordLength);

if (! (buffer = (char*)malloc(recordLength+l))) {
printf ("Insufficient storage to allocate buffer.\n");
return 1;

} /* endif */

#ifndef MVS
if (check("sock_init",sock_init())) return 1;
#fendif

/* create stream socket */
if (check ("socket", (socketId=socket (AF_INET, SOCK_STREAM, 0))<0)) return 1;

/* bind socket to any local address */

localAddress.sin_family = AF_INET ;
localAddress.sin_addr.s_addr = INADDR_ANY ;
localAddress.sin_port htons (port) ;

if (check ("bind",bind(socketId, (struct sockaddr*)&localAddress,namelen)<0)) return 1 ;

A Beginner's Guide to MVS TCP/IP Socket Programming 189

A Beginner's Guide to MVS TCP/IP Socket Programming

if (check("listen",listen(socketId,1l))) return 1;

if (check ("accept", (newSocket=accept (socketId, (struct sockaddr*)&clientAddress, &namelen))<0)) {
return 1;

} /* endif */

printf ("Client: address: %s, port: %i.\n",
(hostEnt=
gethostbyaddr ((char*) &clientAddress.sin_addr, sizeof (clientAddress.sin_addr) ,h AF_INET))
?hostEnt->h_name:inet_ntoa(clientAddress.sin_addr),
clientAddress.sin_port);

/* echo data to client */
if (receiveRecord (newSocket , buffer , recordLength)) return 1;

if (sendRecord (newSocket , buffer , recordLength)) return 1;
if (check("close newSocket" , close(newSocket))) return 1;
if (check("close socketId" , close(socketId))) return 1;

return 0 ;

}

B.4 Sample Stream Socket C Client

/* Portable socket client - (C) IBM - 1995 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef MVS

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <inet.h>

#include <socket.h>

#include <tcperrno.h>

#define tcperrno errno

#include <errno.h> /* required to make "errno" variable available */

f#else

/* On 0S/2, use SO32DLL.LIB TCP32DLL.LIB */
#define MAX SEND_RECV 32767

#include <types.h>

#include <sys\socket.h>

#include <netinet\in.h>

#include <nerrno.h> /* sock_errno() */

#idefine close soclose
#define tcperror psock_errno
#define tcperrno sock_errno ()
#endif

#include <netdb.h> /* should not precede #include <manifest.h> on MVS */

int check(char *text, int condition) /* if TRUE, error */
{
printf ("%$-9s ", text);
if (condition) {
tcperror ("error");
return tcperrno ;
} else {
printf ("completed OK.\n");

A Beginner's Guide to MVS TCP/IP Socket Programming 190

A Beginner's Guide to MVS TCP/IP Socket Programming

return 0 ;
} /* endif */

int sendRecord (int socketId , char * recordBuffer , unsigned long recordLength)

{

int bytesSent =0 ;
int bytesToBeSent ;
char * remainingData = recordBuffer ;
int remainingBytes = recordLength ;

while (remainingBytes >0) {
#ifdef MAX_ SEND_RECV
bytesToBeSent = min(remainingBytes,MAX SEND_RECV) ;

f#else

bytesToBeSent = remainingBytes ;

#endif

if (check("send", (bytesSent=send (socketId, remainingData,bytesToBeSent,0))<0)) return 1;
if (!'bytesSent) { printf ("Connection broken while sending.\n"); return 1 ; }

printf ("%i bytes have been sent.\n",bytesSent);

remainingBytes -= bytesSent ;

remainingData += bytesSent ;
} /* endwhile */
printf ("Complete record sent.\n");
return 0 ;

int receiveRecord (int socketId , char * recordBuffer , unsigned long recordLength)

{

int bytesReceived =0 ;
int bytesToBeReceived ;
char * remainingData = recordBuffer ;
int remainingBytes = recordLength ;

while (remainingBytes >0) {
#ifdef MAX_ SEND_RECV
bytesToBeReceived = min(remainingBytes, MAX SEND_RECV) ;

f#else

bytesToBeReceived = remainingBytes ;

#endif

if (check("recv", (bytesReceived=recv (socketId, remainingData,bytesToBeReceived, 0))<0)) {
return 1;

} /* endif */

if (!bytesReceived) { printf ("Connection broken while receiving.\n"); return 1 ; }

printf ("%i bytes have been received.\n",bytesReceived);

remainingBytes —-= bytesReceived ;

remainingData += bytesReceived ;
} /* endwhile */
printf ("Complete record received.\n");
return 0 ;

unsigned long * findAddresses (char * id)

{

unsigned long binaryAddress ;
unsigned long * binaryAddresses ;
char * reason ;

struct hostent * hostEnt ;
if ((binaryAddress = inet_addr(id))==INADDR_NONE) {

if (! (hostEnt=gethostbyname (id))) {
switch (h_errno) {

A Beginner's Guide to MVS TCP/IP Socket Programming 191

}

A Beginner's Guide to MVS TCP/IP Socket Programming

case HOST_NOT_FOUND : reason = "host not found" ; break;
case TRY_AGAIN : reason = "try again" ; break;
case NO_RECOVERY : reason = "no recovery" ; break;
case NO_ADDRESS : reason = "no data/address" ; break;
default: reason = "?"

} /* endswitch */
printf ("Gethostbyname for host \"%s\" failed, reason: %s.\n",id, reason);
return 0 ;

} /* endif */

return (unsigned long*) *hostEnt->h_addr_ list ;

} else {
binaryAddresses = (unsigned long *)calloc(2,sizeof (unsigned long));
binaryAddresses [0] = binaryAddress ; /* second entry terminates loop */

return binaryAddresses ;
} /* endif */

int main(int argc, char**argv)

{

int socketId ;
int recordLength = 80 ;
char * serverIld ;
unsigned short serverPort = 9999 ;
struct sockaddr_in serverAddress ;
unsigned long binaryAddress ;
unsigned long * binaryAddresses ;
struct sockaddr_in localAddress ;
char * sendBuffer ;
char * receiveBuffer ;
int namelen = sizeof (localAddress);
char * help =

"Parameters:\n"
"l. address server (dotted or symbolic) (no default)\n"
"2. serverPort (default 9999)\n3. bytes to be sent (default80).\n"

setbuf (stdout,NULL); /* don't buffer: don't loose output in case of errors */

if (argc<2) { printf (help); return 0; }
if (argc>1l) if (*argv[l]=='?') { printf(help); return 0; }

if (argc>1l) if (*argv[l]!='*') serverlId = argv[l] ;
if (argc>2) if (*argv[2]!='*') serverPort = atoi(argv([2]);
if (arge>3) if (*argv[3]!='*') recordLength = atoi(argv[3]);

printf ("server id $s\n"
"server port %i\n"
"record length = %i\n"
, serverld
, serverPort
, recordLength);

if (!(sendBuffer = (char*)malloc(2*recordLength))) {
printf ("Insufficient storage to allocate buffers.\n");
return 1;

} /* endif */

receiveBuffer = sendBuffer + recordLength ;

memset (sendBuffer, 'A', recordLength); /* we will send a record full of A's */
memset (receiveBuffer, 0 ,recordLength); /* blank out - to prevent mistakes */

#ifndef MVS

A Beginner's Guide to MVS TCP/IP Socket Programming

192

A Beginner's Guide to MVS TCP/IP Socket Programming

if (check("sock_init",sock_init())) return 1;
#endif

/* define fixed portion of server address */
serverAddress.sin_family = AF_INET ;
serverAddress.sin_port = htons (serverPort) ;

if (! (binaryAddresses= findAddresses (serverlId))) return 1 ;
while (binaryAddress = *binaryAddresses++) {

/* get a new socket for each connect attempt */
if (check ("socket", (socketId=socket (AF_INET, SOCK STREAM, 0))<0)) return 1;
serverAddress.sin_addr.s_addr = binaryAddress ;

/* connect to server */

printf ("Trying to connect address %s\n", inet_ntoa (serverAddress.sin_addr));

if (!check("connect",

connect (socketId, (struct sockaddr*)&serverAddress, sizeof (serverAddress))<0)) break ;

/* socket can not be reused after a failure */
if (check("close",close(socketId))) return 1l; /* close socket */

} /* endwhile */

if (!binaryAddress) {
printf ("All known addresses of the specified server host were tried without success.\n");
return 1;

} /* endif */

/* Find out where the system bound us */

if (check ("getsockname", getsockname (socketId, (struct sockaddr *)&localAddress, &namelen))) ({
return 1;

} /* endif */

printf ("Our own socket address: %s, port: %$i.\n",
inet_ntoa(localAddress.sin_addr),
ntohs (localAddress.sin_port));

/* send a message and receive echo */
if (sendRecord (socketId , sendBuffer , recordLength)) return 1;
if (receiveRecord (socketId , receiveBuffer , recordLength)) return 1;

/* verify we received the same thing we sent */

if (memcmp (sendBuffer, receiveBuffer, recordLength)) ({
printf ("Echo *NOT* correct.\n");

} else {
printf ("Echo is correct.\n");

} /* endif */

if (check("close",close(socketId))) return 1;

return 0 ;

}

C.0 Appendix C. Sample IMS Socket Programs
This appendix contains sample IMS socket programs that are developed in
COBOL.

It also contains the sample IMS listener security exit that was used in
the ITSO-Raleigh installation.

A Beginner's Guide to MVS TCP/IP Socket Programming 193

@}
—

oN (@}
{OSH (\V]

@
N

A Beginner's Guide to MVS TCP/IP Socket Programming

Dual Purpose Implicit Mode IMS Server Program

C Client Program to Test Dual Purpose IMS Server
Explicit Mode IMS Server Program

IMS Listener Security Exit

C.1 Dual Purpose Implicit Mode IMS Server Program

Identification Division.

*

*

Name:

Logic:

ook ok ok ok ok ok ok ok Ok ok Ok Ok ok Ok ok Ok ok Ok Ok Ok F * F

Function:

Interface:

Returncode:

Written:

Modified:

TPIIMSDP - DI21PART database query program.

Receives a part number, fetches data from the
DI21PART database and sends a message back.
Works for both MFS 3270 and implicit mode

IMS sockets. Dual-purpose IMS MPP.

- none -

1. Receive input message

2. Look up PARTROOT and STANINFO segments

3. Format output message according to
defined layout

4. Insert output message and terminate

— none -

March 7, 1995 at ITSO Raleigh

L I S S N R I R SRR RN N N N

Program-id. TPIIMSDP.

*

*

Environment Division.

*

*

*

Data Division.

*

*

*

Working-storage Section.

*

* Status messages *
* *
01 partnumber—-unknown pic x(79)

Value 'Part number is not in database'.

01 staninfo-unknown pic x(79)
Value 'Onl
01 dli-unknown.

05
05
05
05
05
05

filler
status
filler
status
filler
status

y basic information is available for part number'.

pic x(11) Value 'DLI status='.
-dli pic x(2).

pic x(10) Value ' Function='.
—function pic x(4).

pic x(9) Value ' Segment='.
—-segment pic x(8).

A Beginner's Guide to MVS TCP/IP Socket Programming

194

A Beginner's Guide to MVS TCP/IP Socket Programming

05 filler pic x(1) Value space.
05 status—-message pic x(34) Value space.
01 ioerr—-unknown.
05 filler pic x(11) Value 'DLI status='.
05 ioerr-dli pic x(2).
05 filler pic x(10) Value ' Function='.
05 ioerr-function pic x(4).
05 filler pic x(8) Value ' Assist='.
05 ioerr-status pic x(6) Value space.
05 filler redefines ioerr-status.
10 ioerr-char pic x(2).
10 filler pic x(4).
05 ioerr—-num redefines ioerr-status
pic —-99999.
05 filler pic x(1) Value space.
05 ioerr—-message pic x(31) Value space.
* *
* Work variables *
* *
01 dli-gu pic x(4) Value 'GU'.
01 dli-isrt pic x(4) Value 'ISRT'.
01 dli-gn pic x(4) Value 'GN'.
01 dli-gnp pic x(4) Value 'GNP'.
* *
* SSA's for PARTROOT and STANINFO segments *
* *
01 partroot-ssa.
05 filler pic x(8) Value 'PARTROOT'.
05 filler pic x(11) Value ' (PARTKEY ='.
05 filler pic x(2) Value '02'.
05 partroot-key pic x(15) Value Space.
05 filler pic x(1) Value ')'.
01 staninfo-ssa.
05 filler pic x(8) Value 'STANINFO'.
05 filler pic x(1) value ' '

*

* PARTROOT segment IO area

*

01 partroot-segment.

*

*

05 filler pic x(2).
05 partroot-partno pic x(15).
05 filler pic x(9).
05 partroot—descr pic x(20).
05 filler pic x(4).
* STANINFO segment IO area
01 staninfo-segment.
05 staninfo-proc-code pic x(2).
05 staninfo-inv-code pic x(1).
05 staninfo-rev-number pic x(2).
05 filler pic x(24).
05 staninfo-makedept pic x(2).
05 staninfo-makecost pic x(2).
05 filler pic x(2).
05 staninfo-commodity-code pic x(4).
05 filler pic x(4).
05 filler pic x(25).

A Beginner's Guide to MVS TCP/IP Socket Programming

195

A Beginner's Guide to MVS TCP/IP Socket Programming

* *
* Terminal segment input/output area (MID and MOD) *
* *
01 buffer.
05 buffer-11 pic 9(4) Binary.
05 buffer-zz pic 9(4) Binary.
05 input-buffer.
10 input-trancode pic x(8).
10 input—-partno pic x(15).
10 filler pic x(102).
05 output-buffer redefines input-buffer.
10 output-partno pic x(15).
10 output-descr pic x(20).
10 output-proc-code pic x(2).
10 output-inv-code pic x(1).
10 output-revision—-nbr pic x(2).
10 output-makedept pic x(2).
10 output-makecctr pic x(2).
10 output-commodity pic x(2).
10 output-status pic x(79).

Linkage section.

* *
* Input-Output PCB layout *
* *
01 iopcb.

05 iopcb-lterm pic x(8).

05 iopcb-assist-status-bin pic s9(4) comp.

05 iopcb-assist-status—-char redefines

iopcb-assist-status-bin pic x(2).

88 iopcb-assist—aib-error value 'EA'.
88 iopcb-assist-buffer-full value 'EB'.

88 iopcb-assist-tim-only value 'EC'.
05 iopcb-status pic x(2).

88 iopcb-dli-stop value 'QC'.

88 iopcb-dli-ok value ' '.

88 iopcb-assist—-error value 'ZZ'.
05 iopcb-cdate pic s9(7) comp-3.
05 iopcb-ctime pic s9(7) comp-3.
05 iopcb-input-msgno pic 9(8) binary.
05 iopcb-output-mod pic x(8).
05 iopcb-userid pic x(8).

01 altpcbl.

05 altpcbl-lterm pic x(8).
05 filler pic x(2).
05 altpcbl-status pic x(2).

01 altpcb2.

05 altpcb2-lterm pic x(8).
05 filler pic x(2).
05 altpcb2-status pic x(2).
* *
* DI21PART PCB layout *
* *
01 di2lpart-pcb.
05 filler pic x(10).
05 dbpcb-status pic x(2).
88 dbpcb-dli-ok Value ' '.

88 dbpcb-dli-not—-found Value 'GE'.

A Beginner's Guide to MVS TCP/IP Socket Programming 196

A Beginner's Guide to MVS TCP/IP Socket Programming

05 filler pic x(8).
05 dbpcb-segment-feedback pic x(8).

* *

Procedure Division using iopcb, altpcbl, altpcb2, di2lpart-pcb.

* *
* *
* Receive one input segment. *
* *
Get-unique.
Call 'CBLADLI' using dli-gu
iopcb
buffer.

If iopcb-dli-stop then
go to exit-now.

if not iopcb-dli-ok then
move dli-gu to ioerr—function
Perform io—-error thru io—error-exit
go to exit-now.

Display 'buffer-11 = ' buffer-11.
Display 'buffer-zz = ' buffer-zz.
Display 'input-trancode ' input-trancode.
Display 'input-partno input-partno.

* *
* Origin of input may be determined by analyzing the *
* buffer-zz field. 1If it is zero, input has not been *
* processed by MFS and originates from a socket client. *
* If buffer-zz is 1,2 or 3 input has been processed by MFS *
* and the value corresponds to the MFS option in effect. *
* *
If buffer-zz = 0 then
Display 'Input originates from socket client'
else
Display 'Input originates from 3270 terminal'.
Display 'iopcb-lterm = ' iopcb-lterm.
Display 'iopcb-userid = ' iopcb-userid.
* *
* Look up info in PARTROOT *
* *
move input-partno to partroot-key.
move space to output-buffer.
Call 'CBLADLI' using dli-gu
di2lpart-pcb
partroot-segment
partroot-ssa.
Display 'GU partroot status = ' dbpcb-status.
if dbpcb-dli-not-found then
move partnumber-unknown to output-status
go to isrt-output.
if not dbpcb-dli-ok then
move dli-gu to status—-function
perform db-error thru db-error-exit
go to isrt-output.
* *

A Beginner's Guide to MVS TCP/IP Socket Programming 197

A Beginner's Guide to MVS TCP/IP Socket Programming

* Look up info in STANINFO
*

Call 'CBLADLI' using dli-gnp
di2lpart-pcb
staninfo-segment
staninfo-ssa.
Display 'GNP staninfo status = ' dbpcb-status.
if dbpcb-dli-not-found then
move partroot-partno to output-partno
move partroot-descr to output-descr
move staninfo-unknown to output-status
go to isrt-output.
if not dbpcb-dli-ok then
move dli-gnp to status—function
perform db-error thru db-error-exit
go to isrt-output.

*

* Build output segment
*

move partroot-partno to output-partno.
move partroot-descr to output-descr.
move staninfo-proc-code to output-proc-code.

move staninfo-rev-number to output-revision-nbr.

move staninfo-inv-code to output-inv-code.
move staninfo-makedept to output-makedept.
move staninfo-makecost to output-makecctr.

move staninfo-commodity-code to output-commodity.

move space to output-status.

*

* Send output segment
*

isrt-output.
move 150 to buffer-11.
move zero to buffer-zz.

Display 'buffer-11 = ' buffer-11.
Display 'buffer-zz = ' buffer-zz.
Display 'output buffer ' output-buffer.

Call 'CBLADLI' using dli-isrt
iopcb
buffer.

Display 'ISRT output-buffer iopcb-status = ' iopcb-status.

if not iopcb-dli-ok then
move dli-isrt to ioerr—-function
Perform io—error thru io-error-exit
go to exit-now.

go to get-unique.

*

* Handle bad DLI status from a DB call
*

db-error.
move dbpcb-status to status-dli.
move dbpcb-segment-feedback to status-segment.

A Beginner's Guide to MVS TCP/IP Socket Programming

198

A Beginner's Guide to MVS TCP/IP Socket Programming

move 'DLI Call failed' to status—-message.
move dli-unknown to output-status.

db-error-exit.

*

exit.

* Handle bad DLI status from an IO call

*

io—-error.

move iopcb-status to ioerr-dli.
move space to ioerr-status.
If iopcb-assist-error then
if iopcb-assist-status-bin < 0 then
move iopcb-assist-status-bin to ioerr—-num

else
move iopcb-assist-status-char to ioerr-char
end-if
move 'Socket error' to ioerr-message
else

move space to ioerr-char

move 'IO PCB call failed' to ioerr—-message
end-if.
Display ioerr—unknown.

io—-error-exit.

*

exit.

* Terminate program

*

exit—-now.

Goback.

C.2 C Client Program to Test Dual Purpose IMS Server

/* TPIIMCDP - C client to test IMS dual-purpose implicit mode
server program TPIIMSDP */

/*
/*

* Include Files.

*/

#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>

#define lim 200

/*

#include
#include
#include
#include
#include

*/

<sys/types.h>
<netinet/in.h>
<sys/socket .h>
<netdb.h>
<stdio.h>

#ifdef _ 0S2_

#include
#include
#include
#include

<types.h>

<netinet\in.h>

<sys\socket .h>

<nerrno.h> /* sock_errno() */

#define close soclose
#define tcperror psock_errno

A Beginner's Guide to MVS TCP/IP Socket Programming

199

f#else
#include
#include
#include
#include
#endif
#include

/*

A Beginner's Guide to MVS TCP/IP Socket Programming

<manifest.h>
<bsdtypes.h>
<in.h>
<socket.h>

<netdb.h>

* Client Main.

*/
main (int
{
/*

* *

*

*/

argc, char**argv)

Transaction Request Message (TRM)
Sent by us to the IMS listener to
initiate IMS transaction

struct TRM message {
unsigned short 11;
unsigned short zz;

char trnreq [8];
char trancode [8];
char userid [8];
char pwd [8];
} TRM;
/*
* Request Status Message (RSM)
* Sent by the IMS Listener
*/

struct RSM message {
unsigned short 11;
unsigned short zz;
char id [8];
unsigned long rc;
unsigned long reason;
} RSM;

/*
*
*

*/

Completed Status Message (CSM)
Sent by the assist code

struct CSM _message {
unsigned short 11;
unsigned short zz;

char csmoky [8];
} CsM™;
/*
* Segment buffer for sending and receiving data
*/

struct segment_buffer ({
unsigned short 11;
unsigned short zz;

char buf [200];
} segment;
/*
* Segment buffer for input segment to IMS
*/

struct input_segment_buffer {
unsigned short 11;
unsigned short zz;
char trancode [8];
char partno [15];
} input_segment;

A Beginner's Guide to MVS TCP/IP Socket Programming

200

A Beginner's Guide to MVS TCP/IP Socket Programming

/*
* Segment buffer for output segment from IMS
*/
struct output_segment_buffer {
unsigned short 11;
unsigned short zz;

char partno [15];
char descr [20];
char proccode [2];
char invcode [1];
char revnbr [2];
char makedept [2];
char makecctr [2];
char commodity [2];
char status [79];

} output_segment;

unsigned short port; /* port client will connect to
char buf [lim]; /* send receive buffer */
unsigned short lenbytes; /* Length field
struct hostent *hostnm; /* server host name information
struct sockaddr in server; /* server address
int s; /* client socket
struct clientid ourclientid; /* Client ID structure
/*

* Check Arguments Passed. Should be hostname and port.

*/

if (argc != 3) {
printf ("Usage: %s hostname port\n", argv[O0]);
exit (1);

}

printf ("Usage: %s hostname port\n", argv[0]);

/*
* The host name is the first argument. Get the server address.
*/
hostnm = gethostbyname (argv[1l]);
if (hostnm == (struct hostent *) 0) ({
printf ("Gethostbyname failed\n");
exit (2);
}
/*
* The port is the second argument.
*/
port = (unsigned short) atoi(argv[2]);
/*
* Build the TRM
*/
TRM.1l1l = htons (36);
TRM.zz = 0;
strcpy (TRM.trnreq, "*TRNREQ*");
strcpy (TRM. trancode, "TCP3 "),

strcpy (TRM.userid, "USERO1 ");

/*
* Put the server information into the server structure.
* The port must be put into network byte order.

*/

A Beginner's Guide to MVS TCP/IP Socket Programming

*/

*/
*/
*/
*/
*/

201

A Beginner's Guide to MVS TCP/IP Socket Programming

server.sin_ family = AF_INET;
server.sin_port = htons (port) ;
server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

/*
* Get a stream socket.
*/
if ((s = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
tcperror ("Socket () ") ;

exit (3);
}
printf ("Socket sd = %d\n", s);
/*
* Let us see our Client ID
*/

if (getclientid (AF_INET, &ourclientid) < 0) {
tcperror ("Getclientid()");
exit (4);
}
printf ("ClientID Jobname %$s\n", ourclientid.name);
printf ("ClientID Subtaskname = %s\n", ourclientid.subtaskname);

/*
* Connect to the server and send TRM
*/
if (connect (s, (struct sockaddr*) &server, sizeof(server)) < 0) {
tcperror ("Connect () ") ;
exit (4);
}
printf ("Connected\n") ;
if (send(s, (char*) &TRM, sizeof(TRM), 0) < 0) {
tcperror ("Send() ") ;
exit (5);
}
printf ("Send of TRM complete\n");

printf ("TRM trancode = %s\n", TRM.trancode);
/*
* Build transation input_segment and send it
*/

input_segment.ll = htons(sizeof (input_segment));
input_segment.zz = 0;
memcpy (input_segment .partno, "250794 ", 15);

if (send(s, (char*) &input_segment, sizeof (input_segment), 0) < 0) {
tcperror ("Send() of input_segment");
exit (7);

}

printf ("Send data complete\n");

/*
* Send End of Message segment
*/

segment .11l = htons(4);

segment.zz = 0;

if (send(s, (char*) &segment, 4, 0) < 0) {
tcperror ("Send()");
exit (7);

A Beginner's Guide to MVS TCP/IP Socket Programming 202

A Beginner's Guide to MVS TCP/IP Socket Programming

printf ("EOM segment sent\n");

/*
* Receive first segment into buffer
*/
if (recv(s, (char*) &segment, 4, MSG_PEEK) < 0) {
tcperror ("Recv () Peek for 4 bytes");
exit (6);
}
lenbytes = ntohs(segment.1ll);
printf ("Bytes ready to read is %d\n", lenbytes);
if (recv(s, (char*)é&segment, lenbytes, 0) < 0) {
tcperror ("Recv () ") ;
exit (6);
}

if (!memcmp (buf, "*REQSTS*", 8)) {

memcpy (&RSM, &segment, ntohs(segment.1ll));

printf ("Receive of RSM complete\n");

RSM.rc = ntohl (RSM.rc);

RSM.reason = ntohl (RSM.reason);

printf ("RSM rc = %d\n", RSM.rc);

printf ("RSM reason code = %d\n", RSM.reason);

if (RSM.rc > 0) {
printf ("Negative response in RSM message - rc=%d\n", RSM.rc);
exit (12);

}

if (recv(s, (char*) &segment, 4, MSG_PEEK) < 0) {
tcperror ("Recv () Peek for 4 bytes");
exit (6);

}

lenbytes = ntohs(segment.1ll);

printf ("Bytes ready to read is %d\n", lenbytes);

if (recv(s, (char*) &segment, lenbytes, 0) < 0) {
tcperror ("Recv () ") ;
exit (6);

}

printf ("Full output segment is %s\n", segment.buf);
memcpy (&output_segment, &segment, ntohs(segment.1ll));
printf ("Output data received\n");

printf ("Partno = %s\n", output_segment.partno);
printf ("Descr = %s\n", output_segment.descr);
printf ("Proccode %$s\n", output_segment.proccode);
printf ("Invcode %$s\n", output_segment.invcode);
printf ("Revnbr = %s\n", output_segment.revnbr);
printf ("Makedept %$s\n", output_segment.makedept);
printf ("Makecctr %$s\n", output_segment.makecctr);
printf ("Commodity %$s\n", output_segment.commodity) ;
printf ("Status %$s\n", output_segment.status);

/*
* Receive EOM message
*/
if (recv(s, (char*) &segment, 4, 0) < 0) {
tcperror ("Recv () ") ;
exit (6);
}
printf ("Receive of EOM segment complete");

A Beginner's Guide to MVS TCP/IP Socket Programming 203

/*

A Beginner's Guide to MVS TCP/IP Socket Programming

* Receive CSM message

*/
if

}

(recv(s, (char*) &CSM, sizeof(CSM), 0) < 0) {
tcperror ("Recv()");

exit (6);

printf ("recv returned %s\n", CSM.csmoky);

if (!memcmp (CSM.csmoky, "*CSMOKY*", 8)) ({
printf ("Receive of CSM complete: %s\n", CSM.csmoky);

}
/*

* Close the socket.

*/

close(s);

printf ("Client Ended Successfully\n");
exit (0);

C.3 Explicit Mode IMS Server Program

ok ok ok ok ok ok ok ok ok Ok Ok ok ok ok Ok ok ok ok ok Ok ok Ok ok ok ok ok ok ok ok Ok %k F F F

Identification Division.

*

Name:

Function:

TPIIMSSE - IMS echo server, started wvia the
IMS Listener.

This program works as an echo server under IMS.
The program uses TCP protocols and is coded

in explicit mode.

The client used to test both EIMSTSRI and
TPIIMSSE is the same: EIMSTCLI. 1In order to
that, this explicit mode server uses the same
application protocol as the IMS assist modules
implement for an implicit mode server.

Input messages are preceeded by a two byte
binary length field followed by two bytes with
binary zeroes.

The last input message is an EOM message and has
length field of 4.

llzz-message data-

llzz-more message data-

11zz (11=4, EOM message)

Output from this server uses the same format -
2 length bytes in front of message and signals
end of output via an EOM segment with a length
of four.

First output message is a Request Status
Message with an rc=0.

It terminates the connection by sending a

CSM (Completed Status Message) to the client.
11zz-RSM-

llzz-message data-

llzz-more message data-

A Beginner's Guide to MVS TCP/IP Socket Programming

L I S N S I N R SR R R N NN N R R N

204

A Beginner's Guide to MVS TCP/IP Socket Programming

* 11zz (11=4, EOM message) *
* 11lzz-CSM- *
* *
* Interface: - none - *
* *
* Logic: 1. Receive TIM from listener *
* 2. Initapi and takesocket with TIM info *
* 3. Send RSM message to client *
* 4. Receive client messages *
* 5. Echo messages back to client (including *
* clients own EOM message) *
* 6. Send CSM message to client *
* 7. Close socket and terminate socket API *
* 8. Issue new IMS GU for next TIM *
* *
* Returncode: - none - *
* *
* Written: June 4'th 1994 at ITSO Raleigh *
* *
* Modified: *
* *
* *

Program-id. TPIIMSSE.

* *

Environment Division.
* *

* *

Data Division.
* *

Working-storage Section.

* *
* Socket interface function codes *
* *

01 soket-functions.

02 soket-accept pic x(16) value 'ACCEPT .
02 soket-bind pic x(16) value 'BIND ',
02 soket-close pic x(16) value 'CLOSE ',
02 soket-connect pic x(16) value 'CONNECT ',
02 soket-fentl pic x(16) value 'FCNTL ',
02 soket-—getclientid pic x(16) value 'GETCLIENTID .

02 soket—gethostbyaddr pic x(16) value 'GETHOSTBYADDR .
02 soket—gethostbyname pic x(16) value 'GETHOSTBYNAME .

02 soket—gethostid pic x(16) value 'GETHOSTID ',
02 soket—gethostname pic x(16) value 'GETHOSTNAME .
02 soket—getpeername pic x(16) value 'GETPEERNAME .
02 soket-—getsockname pic x(16) value 'GETSOCKNAME ',
02 soket—getsockopt pic x(16) value 'GETSOCKOPT ',
02 soket—givesocket pic x(16) value 'GIVESOCKET ',
02 soket-initapi pic x(16) value 'INITAPI .
02 soket-ioctl pic x(16) value 'IOCTL ',
02 soket-listen pic x(16) value 'LISTEN ',
02 soket-read pic x(16) value 'READ ',
02 soket-recv pic x(16) value 'RECV ',
02 soket-recvfrom pic x(16) value 'RECVFROM ',
02 soket-select pic x(16) value 'SELECT ',
02 soket-send pic x(16) value 'SEND ',
02 soket-sendto pic x(16) wvalue 'SENDTO ',
02 soket-setsockopt pic x(16) value 'SETSOCKOPT ',

A Beginner's Guide to MVS TCP/IP Socket Programming 205

02
02
02
02
02

*

A Beginner's Guide to MVS TCP/IP Socket Programming

soket-shutdown
soket—-socket
soket—-takesocket
soket-termapi
soket-write

pic
pic
pic
pic
pic

x(1l6)
x(1l6)
x(1l6)
x(1l6)
x(1l6)

value 'SHUTDOWN '
value 'SOCKET '
value 'TAKESOCKET '
value 'TERMAPI '.
value 'WRITE ',

* Work variables

*

01 errno

01 retcode

01 ezacic-len
01 dli-gu

01 dli-isrt

*

pic
pic
pic
pic
pic

9(8) binary value zero.
s9(8) binary value zero.
9(8) Binary Value zero.
x(4) Value 'GU'.

x(4) Value 'ISRT'.

* Variables used for the INITAPI call

*

01 maxsoc
01 apitype
01 initapi-ident.

05
05

tcpname
my jobname

01 subtask
01 maxsno

*

pic
pic

pic
pic
pic
pic

9(4) Binary Value 50.
9(4) Binary Value 2.

x(8) Value space.
x(8) Value space.
x(8) value space.
9(8) Binary Value 1.

* Variables returned by the GETCLIENTID

*

Call *

01 clientid-area.

05
05
05
05

*

clientid-domain
clientid—name
clientid-task
filler

pic
pic
pic
pic

9(8) Binary.

x(8) value space.

x(8) value space.
x(20) value low-value.

* Variables used by the TAKESOCKET Call

*

01 take-from-clientid.

05
05
05
05

take-from—-domain
take-from—name
take-from-task
filler

01 socket-descriptor

*

pic
pic
pic
pic
pic

9(8) Binary Value 2.
x(8) value space.

x(8) value space.

x(20) value low-value.
9(4) Binary value zero.

* Transaction Initiation Message segment

*

01 TIM-message.

05 TIM-len pic 9(4) Binary Value zero.
05 filler pic x(2) value low-value.
05 TIM-id pic x(8) wvalue space.
05 TIM-lstn—-name pic x(8) value space.
05 TIM-l1lstn-task pic x(8) wvalue space.
05 TIM-srv-name pic x(8) wvalue space.
05 TIM-srv-task pic x(8) wvalue space.
05 TIM-lstn-socketid pic 9(4) Binary value zero.
05 TIM-tcpip—name pic x(8) wvalue space.
05 TIM-data-type pic 9(4) value zero.
88 TIM-ascii value O.
88 TIM-ebcdic value 1.
* *
* Transaction Request Status message segment *
* *
01 RSM-message.
05 RSM-len pic 9(4) Binary Value 20.
05 filler pic x(2) Value low-value.

A Beginner's Guide to MVS TCP/IP Socket Programming 206

A Beginner's Guide to MVS TCP/IP Socket Programming

05 RSM-oky pic x(8) value '*REQSTS*'.

05 RSM-return-code pic 9(8) Binary Value zero.

05 RSM-reason-code pic 9(8) Binary Value zero.
* *
* Complete Status Message segment *
* *

01 CSM-message.

05 CSM-len pic 9(4) Binary Value 12.
05 filler pic x(2) Value low-value.
05 CSM-oky pic x(8) value '*CSMOKY*'.
* *
* Peek buffer and length fields for RECV peek call *
* *
01 recv-flag-read pic 9(8) Binary value zero.
01 recv-flag-peek pic 9(8) Binary value 2.
01 recv-flag pic 9(8) Binary value 2.
* *
* Buffer and length fields for read operation *
* *
01 read-request-len pic 9(8) Binary Value zero.
01 read-request-read pic 9(8) Binary Value zero.
01 read-request-remaining pic 9(8) Binary Value zero.
01 read-buffer.
05 read-buffer-total pic x(8192) Value space.

05 read-buffer-byte redefines read-buffer-total
pic x occurs 8192 times.
05 read-buffer-segment redefines read-buffer-total.
10 read-buffer-seg-len pic 9(4) Binary.

88 EOM-segment value 4.
10 read-buffer-seg-data pic x(8190).

* *
* Buffer and length fields for write operation *
* *

01 send-request-len pic 9(8) Binary Value zero.

01 send-request-sent pic 9(8) Binary value zero.

01 send-request-remaining pic 9(8) Binary value zero.

01 send-buffer.

05 send-buffer-total pic x(8192) value space.

05 send-buffer-seq redefines send-buffer-total

pic x(8) occurs 1024 times.
05 send-buffer-byte redefines send-buffer-total

pPic x occurs 8192 times.

* *
* Error message for socket interface errors *
* *

01 ezaerror-msg.

05 filler pic x(9) Value 'Function='.
05 ezaerror-function pic x(16) Value space.
05 filler pic x value ' '.
05 filler pic x(8) Value 'Retcode='.
05 ezaerror-retcode pic ——-99.
05 filler pic x value ' '.
05 filler pic x(9) Value 'Errorno='.
05 ezaerror—errno pic zzz99.
05 filler pic x value ' '.
05 filler pic x(11)
Value 'DLI-status='.
05 ezaerror-dli-status pic x(2) value space.
05 filler pic x value ' '.
05 ezaerror-text pic x(50) value ' '.

Linkage section.

A Beginner's Guide to MVS TCP/IP Socket Programming 207

*

A Beginner's Guide to MVS TCP/IP Socket Programming

* Input-Output PCB layout

*

01 iopcb.
05 iopcb-lterm pic x(8).
05 filler pic x(2).
05 iopcb-status pic x(2).
05 iopcb-cdate pic s9(7) comp-3.
05 iopcb-ctime pic s9(7) comp-3.
05 iopcb-input-msgno pic 9(8) binary.
05 iopcb-output-mod pic x(8).
05 iopcb-userid pic x(8).

01 altpcbl.

05
05
05

*

altpcbl-lterm pic x(8).
filler pic x(2).
altpcbl-status pic x(2).

*

Procedure Division using iopcb, altpcbl.

*

*

*

* Receive TIM from listener

*

Get-unique.
Call 'CBLTDLI' using dli-gu

If

if

iopcb

TIM-message.

iopcb-status = 'QC' then

go to exit-now.

iopcb-status not equal ' ' then

move 'IOPCB Get-Unique' to ezaerror-function

move iopcb-status to ezaerror-dli-status

perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-now.

* F * *

Initialize socket API with the values we got from
the IMS Listener

Move soket-initapi to ezaerror-function.
Move TIM-srv-name to myjobname.

Move TIM-srv-task to subtask.

Move TIM-tcpip-name to tcpname.

Display 'Initapi myjobname=' myjobname

' subtask=' subtask.

Call 'EZASOKET' using soket-initapi

If

maxsoc

initapi-ident

subtask

maxsno

errno

retcode.

retcode < 0 then

move 'Initapi failed' to ezaerror-text

perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-now.

A Beginner's Guide to MVS TCP/IP Socket Programming

* * * *

208

A Beginner's Guide to MVS TCP/IP Socket Programming

* Issue a getclientid to take a look at the actual *
* clientid we are running under *

*

*

* Issue a take-socket with the values we got from
* the IMS Listener

*

* * * *

*

move soket-getclientid to ezaerror-function.
Call 'EZASOKET' using soket-getclientid
clientid-area
errno
retcode.
If retcode < 0 then
move 'Getclientid failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.
Display 'Getclientid returned Domain=' clientid-domain.
Display ' Address space name=' clientid—-name.
Display ' Subtask name=' clientid-task.

* * * *

move soket-takesocket to ezaerror—function.

move TIM-lstn-name to take-from—name.

move TIM-lstn-task to take-from-task.

Display 'TIM-message=' TIM-message.

Display 'Takesocket from—name=' take-from-name
' from—task=' take-from-task.

Call 'EZASOKET' using soket-takesocket
TIM-1lstn-socketid
take-from-clientid
errno
retcode.

If retcode < 0 then
move 'Takesocket failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-term-api.

move retcode to socket-descriptor.

Send an OK Request Status Message to the client.
We have been started via the IMS Listener

* * * *

If TIM-ascii then
Move 8 to ezacic-len
Call 'EZACICO4' using RSM-oky

ezacic-len.

Move RSM-message to send-buffer.

Move RSM-len to send-request-len.

Perform send-tcp thru send-tcp-exit.

If send-request-sent < 0 then
move 'Write RSM failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit
go to exit-close-socket.

* Peek at first bytes of client data *

*

Perform until EOM-segment

A Beginner's Guide to MVS TCP/IP Socket Programming

209

A Beginner's Guide to MVS TCP/IP Socket Programming

Move 2 to read-request-len
Move recv-flag-peek to recv-flag
Perform read-tcp thru read-tcp-exit
if read-request-read < 0 then
Display 'Peek failed'
go to exit-close-socket
end-if

*

* Read client data *
*

move read-buffer-seg-len to read-request-len
move recv-flag-read to recv-flag
Perform read-tcp thru read-tcp-exit
If read-request-read < 0 then
move 'Read failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if

*

* Echo data back to client *
*

move read-buffer to send-buffer
move read-request-read to send-request-len
Perform send-tcp thru send-tcp-exit
If send-request-sent < 0 then
move 'Send failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if

end-perform.

Send a transaction Completed Status Message to the
client

* * * *
* * * *

If TIM-ascii then
Move 8 to ezacic-len
Call 'EZACICO4' using CSM-oky
ezacic-len.
move CSM-len to send-request-len.
move CSM-message to send-buffer.
Perform send-tcp thru send-tcp-exit
If send-request-sent < 0 then
move 'Send CSM failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror—-msg-exit
go to exit-close-socket.

*

* Close the socket *
*

exit-close—-socket.
move soket-close to ezaerror-function

A Beginner's Guide to MVS TCP/IP Socket Programming 210

A Beginner's Guide to MVS TCP/IP Socket Programming

Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode.
If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit.

* *
* Terminate socket API and request next TIM from IMS *
* *

exit-term-api.
Call 'EZASOKET' using soket-termapi.
Go to get-unique.

* *
* Terminate program *
* *
exit-now.
Goback.
* *
* Subroutine *
[R ——— *
* *
* Write out an error message *
* *

write—ezaerror—-msg.
move errno to ezaerror—errno.
move retcode to ezaerror-retcode.
display ezaerror-msg.
write—ezaerror-msg-exit.
exit.

*

Subroutine

*

Read data from a TCP socket

* ok ok F * *

Read-TCP.
move soket-recv to ezaerror-function.
move zero to read-request-read.
move read-request-len to read-request-remaining.
Perform until read-request-remaining = 0
Display 'Ready for new read'
Display 'Number of bytes remaining='
read-request-remaining
Display 'Number of bytes read until now='
read-request-read
Call 'EZASOKET' using soket-recv
socket-descriptor
recv-flag
read-request-remaining
read-buffer-byte (read-request-read + 1)
errno
retcode
Display 'Read returned rc=' retcode

A Beginner's Guide to MVS TCP/IP Socket Programming 211

A Beginner's Guide to MVS TCP/IP Socket Programming

If retcode < 0 then
move 'Read call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
Display 'Number of bytes read=' retcode
Add retcode to read-request-read
Subtract retcode from read-request-remaining
If retcode = 0 then
Display 'End-of-data received too early'
Display 'Server probably closed socket'
Move zero to read-request-remaining
end-if
end-perform.
Read-TCP-exit.
exit.

*

Subroutine

*

Send data over a TCP socket

Send-TCP.
move soket-write to ezaerror-function.
move send-request-len to send-request-remaining.
move 0 to send-request-sent.
Perform until send-request-remaining = 0
Display 'Ready for new write'
Display 'Number of bytes remaining='
send-request-remaining
Display 'Number of bytes sent until now='
send-request-sent
Call 'EZASOKET' using soket-write
socket-descriptor
send-request-remaining
send-buffer-byte (send-request-sent + 1)
errno
retcode
Display 'Write returned an rc=' retcode
If retcode < 0 then
move 'Write call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
Display 'Number of bytes written=' retcode
add retcode to send-request-sent
subtract retcode from send-request-remaining
end-perform.
Send-TCP-exit.
exit.

C.4 IMS Listener Security Exit

* ok ok F * *

khkkhkhkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkkkhhkk

*

* Name: IMSLSECX - IMS Sockets Listener security exit.
*

A Beginner's Guide to MVS TCP/IP Socket Programming

*
*
*

212

A Beginner's Guide to MVS TCP/IP Socket Programming

Function: Validate stream socket connections to IMS.

Interface: Rl -> parameter list with eight pointers:
+0 -> Fullword IP Address (In)
+4 -> Halfword port number (In)
+8 -> 8 byte IMS tranaction code name (In)
+12 -> Halfword datatype (0, ASCII, 1 EBCDIC) (In)
+16 —> Fullword length of user data in TRM (In)
+20 -> User data (In)
+24 -> Fullword return code (Out)
+28 —-> Fullword reason code (Out)

Security exit interface contains user data. User
data is installation-defined, in our case as 32
bytes with the following layout:

8 bytes user ID

8 bytes password

8 bytes new password (optional)

8 bytes RACF group ID (optinal)

[y

Logic: Validates if all required parms are present.

2. Calls TPIRACF for user authentication and
creation of task level security environment.

3. Authorizes user's access to requested IMS tran
code via call to TPIAUTH for resource class
FACILITY and resource TPI.IMSSOCK.trancode. *

4. Deletes user security environment again and

ok ok ok ok ok ok ok Ok Ok ok Ok Ok Ok ok Ok Ok Ok Ok Ok Ok Ok F F *

Abends: User abend 1001: If RACROUTE REQUEST=DELETE fails
and we do not know if we are
continueing under a user security

environment, we abend.

Return codes: Return and reason codes set in the IMS listener
security exit interface area.

RC=000 Reason=000: User authenticated OK and user's *

access to tran code authorized OK.*

RC=008 Reason=101: UserID and password missing in TRM¥*

* ok ok ok ok Ok Ok F * *

Written:

RC=008
RC=008
RC=008
RC=008
RC=008
RC=008
RC=008
RC=008
RC=008
RC=008
RC=008
RC=008

ITSO, Raleigh April 16, 1995

Reason=102:
Reason=103:
Reason=104:
Reason=105:
Reason=106:
Reason=107:
Reason=108:
Reason=109:
Reason=110:
Reason=111:
Reason=112:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* returns to IMS listener.
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* Reason=113:
*
*
*
*

Invalid length of userdata in TRM *
UserID not defined to RACF *
Invalid password

Password has expired

New password is not valid
User does not belong to group
User is revoked

Access to group is revoked
User not authorized to IMS Sockets*
TPIRACF internal error

TPIRACF internal error

User not authorized to tran code

* % ok F * *

* ok ok ok F * *

khkkhkhkkhkhkkhkhkkhhkkhkhkhkhkhkhkhkhkkhkhhkkk

*

INTFAREA DSECT

LSIPADDR DC A(0) *—> Client IP address

LSPORT DC A(0) *—> Client port number

LSTRNNAM DC A(0) *—> IMS transaction code name
LSDATTYP DC A(0) *—> Datatype (0 ASCII, 1 EBCDIC)

A Beginner's Guide to MVS TCP/IP Socket Programming

213

A Beginner's Guide to MVS TCP/IP Socket Programming

LSDATLEN DC A(0) *—> Length of user data in TRM
LSUSRDAT DC A(0) *—> User data area

LSRETCOD DC A(0) *—> Return code field

LSREACOD DC A(0) *—> Reason code field

*

USERDATA DSECT

LSUSERID DC CcCL8' ' *User ID

LSPWD DC CL8' ' *Password

LSNPWD DC CcL8' ' *New Password (Optional)
LSGROUP DC CcCL8' ' *Group ID (Optional)

*

IMSLSECX INIT

*
LR

USING INTFAREA,6R11l

'IMS Sockets Listener security exit',K MODE=31

R11,R1

*Parameter pointer
*Adressability of parameters

*
*
*
* Check passed parameters and do any necessary conversion from
* ASCII to EBCDIC.
*
*
*
L R2, LSDATLEN *—> Fullword with L'userdata
L R9, 0 (R2) *L'userdata
Cc R9,=A(16) *User ID and Password must be there
BL TOFEWPRM *Too few parameters passed
BE PARMOK *Only userID and password is OK
(o] R9,=A(24) *Exactly 24 bytes long
BE PARMOK *— is OK - new password
(o] R9,=A(32) *Or exactly 32 bytes long
BNE LENERR *— is OK, if anything else: error
PARMOK EQU *
L R3, LSDATTYP *—> Halfword with datatype
L R4, LSUSRDAT *—> Userdata
LH R9, 0 (R3) *Datatype
LTR R9,R9 *Is data ASCII ?
BNZ ISEBCDIC *— No, data is EBCDIC

CALL EZACICOS5, ((R4), (R2)),VL *Translate ASCII to EBCDIC
ISEBCDIC EQU *

Build TPIRACF parameters and call TPIRACF to verify user.

* ok ok F F * *

MVC USERID(32) ,=CL32' ' *Initialize all parms to space

MvVC REQCODE, =A (REQVER) *Issue RACROUTE REQUEST=VERIFY

USING USERDATA, R4 *User data area addressability

MvVC USERID, LSUSERID *User ID from TRM

MvVC PWD, LSPWD *Password from TRM

L R9, 0 (R2) *L'userdata

(o} R9,=A(16) *Is there a new password ?

BNH DOVER *— No, all parms are set

MvC NPWD, LSNPWD *New password from TRM

(o} R9,=A(24) *Is there a group ID ?

BNH DOVER *— No, all parms are set

MvVC GROUP , LSGROUP *Group ID from TRM

DOVER EQU *

CALL TPIRACF, * Cc

(REQCODE, *RACROUTE REQUEST=VERIFY Cc

A Beginner's Guide to MVS TCP/IP Socket Programming 214

A Beginner's Guide to MVS TCP/IP Socket Programming

USERID, * Cc
PWD, * Cc
NPWD, * Cc
GROUP, * (o]
APPLNAME) , VL
LTR R15,R15 *Was VERIFY Successful?
BNZ VERFAIL *— No, return error to client.
*
*
*
* Build TPIAUTH parameters and call TPIAUTH to test if user is
* authorized to TPI.IMSSOCK.trancode in the FACILITY resource class.
*
*
*
L R2, LSTRNNAM *—> IMS Transaction code name
MVC RESTRNNM, 0 (R2) *Move to FACILITY Class resource nm.
CALL TPIAUTH, *Authorize call c
(RESNAME, *Resource name C
AUTHACC) , VL *Test for read access
ST R15, AUTHRC *Save RC for a little later
*
*
*
* Delete user security environment again, so we restore address space
* security environment before we return to the IMS Listener.
*
*
*
MVC PWD (24) ,=CL24"' ' *Space out unneeded parms
MVC REQCODE, =A (REQDEL) *We want to delete sec. environment
CALL TPIRACF, * Cc
(REQCODE, *RACROUTE REQUEST=DELETE Cc
USERID, * C
PWD, *Space Cc
NPWD, *Space Cc
GROUP, *Space Cc
APPLNAME) , VL
LTR R15,R15 *This should only give RC=0
BZ DELOK *— which it did
LR R9,R15 *Save RC
CVD R15, DORD *Convert
oI DORD+7, X' OF' *— to something
UNPK WTODELRC, DORD *— readable in a WTO
WTO MF= (E, WTODEL) *Tell about it
CH R9,=AL2 (253) *Does not leave a security env.
BE DELOK *— which is OK
WTO 'IMSLSECX - User abend 1001 due to above return code'
ABEND 1001, DUMP *Others may leave user sec. active.

DELOK EQU *
ICM R9,B'1111',AUTHRC *Return code from AUTH call

BNZ AUTHFAIL *ITf not zero, auth failed.
SR R15,R15 *Set RC=0

SR R10,R10 *— and Reason code=0

B RETURN *And exit

Error exit routines. Set R15 to return code and R10 to
reason code and go to common exit code.

* % ok F * * *

A Beginner's Guide to MVS TCP/IP Socket Programming 215

A Beginner's Guide to MVS TCP/IP Socket Programming

*

AUTHFAIL EQU *

LA R10, NOTAUTH

LA R15,8

B RETURN
VERFAIL EQU *

LM R5,R7,RCBXLE
RCLOOP EQU *

CH R15, 0 (R5)

BE SETREAS

BXLE R5,R6,RCLOOP
SETREAS EQU *

LH R10, 2 (R5)

LA R15,8

B RETURN
TOFEWPRM EQU *

LA R15,8

LA R10, PARMERR1

B RETURN
LENERR EQU *

LA R15,8

LA R10, PARMERR2

RETURN EQU *

L R2, LSRETCOD
ST R15,0(R2)

L R2, LSREACOD
ST R10,0(R2)
TERM RC=0

LTORG

*User is not authorized

*Not authorized to tran code
*This is an error

*And exit

*User did not verify successfully
*Prepare to set reason code

*This TPIRACF Return code ?
*— Yes, set corresponding reason
*We use last entry as garbage can

*Here is corresponding reason code
*This is an error
*And exit

*This is an error
*To few parameters
*Exit

*This is an error
*Wrong length

*—> Return code field
*Pass back return code
*—> Reason code field
*Pass back reason code
*Return to IMS Listener

Work areas and constants.

Reason codes

* % ok ok ok ok F * *

PARMERR1 EQU 101

PARMERR2 EQU 102

NOTAUTH EQU 113

*

RCBXLE DC A (START, 4, LAST)

START DC AL2 (4,103)
DC AL2(8,104)
DC AL2(12,105)
DC AL2(16,106)
DC AL2(20,107)
DC AL2 (24,108)
DC AL2 (28,109)
DC AL2(32,110)
DC AL2 (254,111)

LAST DC AL2 (255,112)

*

REQCODE DC A(0)

REQVER EQU O

REQDEL EQU 8

USERID DC CL8' '
PWD DC CL8' '
NPWD DC CL8' '
GROUP DC CL8' '

*At least user ID and password req.
*Length must be 16, 24 or 32.
*User not authorized to trancode

*TPIRACF RC to Reason code convert.
*User ID not defined to RACF
*Invalid password

*Password has expired

*New password is not wvalid

*User ID does not belong to group
*User ID is revoked

*Access to group is revoked

*User ID is not authorized to appl
*Internal error

*Some other error

*TPIRACF Request Code
*REQUEST=VERIFY
*REQUEST=DELETE

*User ID

*Password

*New password

*Group ID

A Beginner's Guide to MVS TCP/IP Socket Programming

216

A Beginner's Guide to MVS TCP/IP Socket Programming

APPLNAME DC CL8'IMSLSTN' *Application name (IMSLSTN)
*
AUTHRC DC A(0) *Saved RC from TPIAUTH
RESNAME DC C'TPI.IMSSOCK.' *Resource TPI.IMSSOCK.trancode
RESTRNNM DC CL8' '
DC CL(80- (*-RESNAME)) ' '
AUTHACC DC CL8'READ' *We want read access
*
WTODEL WTO 'IMSLSECX — RACROUTE REQUEST=DELETE Gave RC=xxxx', Cc
MF=L
WTODELRC EQU WTODEL+48, 4
DORD DC D'0’
*
END

D.0 Appendix D. Sample CICS Socket Program

This appendix contains sample CICS socket programs that are developed in

COBOL and C.

D.1 Stream Socket COBOL Program for CICS
.2 C Version of EZACICSC

=)

D.I Stream Socket COBOL Program for CICS

Identification Division.

*

Name: TPICICSS — CICS echo server program that is
started via the CICS Listener.
CICS transaction code TPIE.

Function: This is a stream socket program. The server
is started via the TPIE CICS transaction code.
It will echo back to the client any data the
client sends to it. It will close the socket
and terminate when the client closes its socket.
If the client is quiet for more than 30 seconds,
the server will timeout and close the

connection.
Interface: CICS Listener Transaction Initiation Message
Logic: 1. Receive TIM from CICS listener

2. Initialize API and takesocket

3. Enter a read/write loop where data will be
echoed back to the client
Socket is set to non-blocking in order to
control own timeout logic

4. If no data from client within 30 seconds, the
server closes the connection and terminates

Returncode: - none -
Written: March 8, 1995 at ITSO Raleigh
Modified:

L I I R SR R R R S SRR R N N I R
L R S SN R N N S SR R N N R N SRR R

A Beginner's Guide to MVS TCP/IP Socket Programming 217

A Beginner's Guide to MVS TCP/IP Socket Programming

Program-id. tpicicss.

*

*

Environment Division.

*

*

*

*

Data Division.

*

*

Working-storage Section.

*

* Socket interface function codes

*

01 soket-functions.

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

*

soket-accept
soket-bind
soket-close
soket-connect
soket—-fcntl
soket—-getclientid
soket—-gethostbyaddr
soket—gethostbyname
soket—gethostid
soket—-gethostname
soket—-getpeername
soket—-getsockname
soket—-getsockopt
soket—-givesocket
soket—-initapi
soket-ioctl
soket-listen
soket-read
soket-recv
soket-recvfrom
soket-select
soket-send
soket-sendto
soket-setsockopt
soket-shutdown
soket-socket
soket-takesocket
soket-termapi
soket—-write

pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic

x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value
x(16) value

'ACCEPT
'BIND

'CLOSE

' CONNECT
'FCNTL
'GETCLIENTID
'GETHOSTBYADDR
' GETHOSTBYNAME
'GETHOSTID

' GETHOSTNAME
' GETPEERNAME
' GETSOCKNAME
'GETSOCKOPT
'GIVESOCKET
'INITAPI
'IOCTL
'LISTEN
'READ

'RECV
'RECVFROM
'SELECT

' SEND

' SENDTO

' SETSOCKOPT
' SHUTDOWN

' SOCKET
'TAKESOCKET
'TERMAPI
'WRITE

* Work variables

*

01 errno

01 retcode

01 cleng

01 socket-to-take

01 client-ipaddr-dotted
01 client-status

88

client-has—-closed

01 timer-accum

*

pic 9(8) binary value zero.

pic s9(8) binary value zero.
pic s9(4) binary value zero.
pic s9(4) binary value zero.

pic x(15) value space.

pic 9(8) Binary value zero.

Value 1.

pic 9(8) Binary value zero.

* Variables used for the INITAPI call

*

01 maxsoc
01 initapi-ident.

pic 9(4) Binary Value 2.

A Beginner's Guide to MVS TCP/IP Socket Programming

*

218

01

01

*

A Beginner's Guide to MVS TCP/IP Socket Programming

05 tcpname pic x(8) Value ' '.

05 asname pic x(8) Value space.
subtask.

05 init-cics-task pic 9(7).

05 filler pic x value 'I'.

maxsno pic 9(8) Binary Value zero.

* Variables returned by the GETCLIENTID Call - our clientid

*

01

*

clientid.

05 clientid-domain pic 9(8) Binary.

05 clientid—-name pic x(8) wvalue space.

05 clientid-task pic x(8) wvalue space.

05 filler pic x(20) value low-value.

* Variables used for the IOCTL call

*

01
01
01
01

*

ioctl-command-fionbio pic x(4).
ioctl-command-string pic x(16) value 'FIONBIO'.
ioctl-reqarg-non-blocking pic 9(8) Binary value 1.
joctl-retarg pic 9(8) binary value zero.

* CICS Listener client ID used in the TAKESOCKET call

*

01

*

clientid-1stn.

05
05
05
05

cid-domain-lstn pic 9(8) binary.
cid-name-1lstn pic x(8) wvalue space.
cid-subtask-1lstn pic x(8) wvalue space.
cid-res-1lstn pic x(20) value low-value.

* Variables used for the SOCKET call

*

01
01
01
01

*

afinet pic 9(8) Binary Value 2.
soctype-stream pic 9(8) Binary Value 1.
proto pic 9(8) Binary Value zero.

socket—-descriptor

pic 9(4) Binary Value zero.

* Buffer and length fields for read operation

*

01
01
01
01
01

*

recv-flag pic 9(8) Binary value zero.
read-request-len pic 9(8) Binary Value zero.
read-request-read pic 9(8) Binary Value zero.
read-request-remaining pic 9(8) Binary Value zero.
read-buffer.

05 read-buffer-total pic x(8192) Value space.

05 read-buffer-byte redefines read-buffer-total

pic x occurs 8192 times.

* Buffer and length fields for write operation

*

01
01
01
01

*

send-request-len
send-request-sent
send-request-remaining

pic 9(8) Binary value zero.
pic 9(8) Binary value zero.
pic 9(8) Binary value zero.

send-buffer.

05
05

send-buffer-total pic x(8192) value space.
send-buffer-byte redefines send-buffer-total
pic x occurs 8192 times.

* Error message for socket interface errors

*

01

ezaerror—-msg.

05

filler pic x(9) Value 'Function='.

A Beginner's Guide to MVS TCP/IP Socket Programming

*

219

A Beginner's Guide to MVS TCP/IP Socket Programming

05 ezaerror-function pic
05 filler pic
05 filler pic
05 ezaerror-retcode pic
05 filler pic
05 filler pic
05 ezaerror—errno pic
05 filler pic
05 ezaerror-text pic

01 ezaerror-msg-len pic

*

x(16) Value space.

x value ' '.

x(8) Value 'Retcode='.
-—=99.

x value ' '.

x(9) Value 'Errorno='.
zzz99.

x value ' '.

x(50) value ' '.

s9(4) Binary value 105.

* Client ID message to CSMT
*

01 cics-clientid-msg-area.
05 filler pic x(32)
value 'TPICICSS - client ID '.
05 filler pic x(9) value 'Asname= '.
05 clientid-msg—asname pic x(8).
05 filler pic x(10) value ' Subtask= '.
05 clientid-msg-subtask pic x(8).
01 cics—-clientid-msg-len pic 9(4) comp value 69.
* *
* Startup message with TIM information to CSMT *
* *
01 cics-startup—-msg-area.
05 filler pic x(25)
value 'CICS startup parameters: '.
05 startup-old-socket pic zz99.
05 filler pic x value ' '.
05 startup-lstn-asname pic x(8) wvalue space.
05 filler pic x value ' '.
05 startup-lstn-subtask pic x(8) value space.
05 filler pic x value ' '.
05 startup-sin-family pic 9999.
05 filler pic x value ' '.
05 startup-sin-port pic 99999.
05 filler pic x value ' '.
05 startup-sin-addr pic x(15) value space.
01 cics-startup-msg-len pic 9(4) comp value 72.
* *
* Transaction Initiation Message from CICS listener *
* *
01 CICS-listener-TIM.
05 give-take-sd pic 9(8) Binary value zero.
05 lstn-—asname pic x(8).
05 lstn-subtask pic x(8).
05 client-in-data pic x(35).
05 filler pic x(1).
05 sockaddr-in.
10 sin-family pic 9(4) Binary.
10 sin-port pic 9(4) Binary.
10 sin-addr pic 9(8) Binary.
10 sin-zero pic x(8).
*
Procedure Division.

*

*

* Receive TIM from the CICS Listener
*

A Beginner's Guide to MVS TCP/IP Socket Programming

220

A Beginner's Guide to MVS TCP/IP Socket Programming

move 72 to cleng.

exec cics retrieve
into (CICS-listener-TIM)
length (cleng)

end—-exec.

move give-—-take-sd to startup-old-socket.

move lstn-—-asname to startup-lstn-—-asname.

move lstn-subtask to startup-lstn-subtask.

move sin-family to startup-sin-family.

move sin-port to startup-sin-port.

call 'TPIINTOA' using sin-addr startup-sin-addr.

exec cics writeq td
queue ('CSMT')
from(cics-startup-msg-area)
length (cics—-startup-msg-len)

nohandle
end—-exec.
* *
* Initialize socket API *
* *

move space to asname.
move eibtaskn to init-cics-task.
Call 'EZASOKET' using soket-initapi
maxsoc
initapi-ident
subtask
maxsno
errno
retcode.
if retcode < 0 then
move 'Initapi failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit.

* *
* Let us see the client-id *
* *

move soket-getclientid to ezaerror-function.
Call 'EZASOKET' using soket-getclientid
clientid
errno
retcode.
If retcode < 0 then
move 'Getclientid failed' to ezaerror-text
perform write—-ezaerror-msg thru
write—ezaerror—-msg-exit
go to exit-term-api.
move clientid-name to clientid-msg—asname.
move clientid-task to clientid-msg-subtask.
exec cics writeq td
queue ('CSMT')
from(cics—-clientid-msg—area)
length (cics—-clientid-msg-1len)
nohandle
end-exec.

A Beginner's Guide to MVS TCP/IP Socket Programming 221

A Beginner's Guide to MVS TCP/IP Socket Programming

* *
* Take the socket from the CICS Listener *
* *

move lstn—-asname to cid—name-lstn.
move lstn-subtask to cid-subtask-lstn.
move sin-family to cid-domain-lstn.
move low-value to cid-res-1l1lstn.
move give-—-take-sd to socket-to-take.
move soket-takesocket to ezaerror—-function.
Call 'EZASOKET' using soket-takesocket
socket—-to-take
clientid-1stn
errno
retcode.
If retcode < 0 then
move 'Takesocket failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-term-api.
move retcode to socket-descriptor.

* *
* Start read/write loop *
* *

move zero to client-status.
move zero to timer-accum.

Perform until (client-has-closed or
timer—-accum > 30)

* *
* First we turn the socket into non-blocking mode *
* *

Move soket-ioctl to ezaerror-function

Call 'TPIIOCTL' using ioctl-command-string
ioctl-command-fionbio

If return-code > zero then
move 'Call to TPIIOCTL failed' to ezaerror-text
perform write—ezaerror-msg thru

write—ezaerror-msg-exit

go to exit-close-socket

end-if

Call 'EZASOKET' using soket-ioctl
socket-descriptor
ioctl-command-fionbio
ioctl-reqarg-non-blocking
ioctl-retarg
errno
retcode

If retcode < 0 then
move 'IOCTL call failed' to ezaerror-text
perform write—ezaerror-msg thru

write—ezaerror-msg-exit

go to exit-close-socket

end-if
* *
* Then we issue a read for 8192 bytes *
* If we receive any, we echo back what we got *

A Beginner's Guide to MVS TCP/IP Socket Programming 222

A Beginner's Guide to MVS TCP/IP Socket Programming

* If we receive none, we wait 2 seconds

* We will max wait 30 seonds before we time client out

*

Move 8192 to read-request-len
Move zero to recv-flag
Perform read-TCP thru read-TCP-exit
If retcode = zero then
Go to exit-close-socket
end-if
if read-request-read > 0 then

move read-request-read to send-request-len

move read-buffer to send-buffer
Perform send-TCP thru send-TCP-exit
move zero to timer-accum
else

if errno = 35 then

add 2 to timer-accum

exec cics delay

for seconds(2)

end-exec
else
move 1 to client-status
end-if
end-if

end-perform.

If timer—-accum > 30 then
move '30 second timeout' to ezaerror-text
move 'Timeout' to ezaerror-function
perform write—ezaerror-msg thru
write—ezaerror—-msg-exit
else

move 'Client closed socket' to ezaerror-text

move 'Client-close' to ezaerror-function
perform write—-ezaerror-msg thru
write—ezaerror-msg-exit
end-if.

*

* Close socket and terminate
*

exit—-close—-socket.

move soket-close to ezaerror-function.

Call 'EZASOKET' using soket-close
socket-descriptor
errno
retcode.

If retcode < 0 then
move 'Close call failed' to ezaerror-text
perform write—ezaerror-msg thru

write—ezaerror-msg-exit.

*

* Terminate socket API
*

exit-term-api.
Call 'EZASOKET' using soket-termapi.

A Beginner's Guide to MVS TCP/IP Socket Programming

223

A Beginner's Guide to MVS TCP/IP Socket Programming

* Terminate program
*

exit—-now.
exec cics return
end—-exec.
Goback.

*

* Write out an error message to CSMT
*

write—ezaerror—-msg.
move errno to ezaerror—errno.
move retcode to ezaerror-retcode.
exec cics writeq td
queue ('CSMT')
from(ezaerror—-msqg)
length (ezaerror-msg-len) nohandle
end-exec.
write—ezaerror-msg-exit.
exit.

*

Subroutine:

*

Read data from a TCP connection

Read-TCP.
move soket-recv to ezaerror-function.
move zero to read-request-read.
move read-request-len to read-request-remaining.
Perform until read-request-remaining = 0
Call 'EZASOKET' using soket-recv
socket—-descriptor
recv-flag
read-request-remaining
read-buffer-byte (read-request-read + 1)
errno
retcode
If retcode < 0 and errno not = 35 then
move 'Read call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
If retcode > 0 then
Add retcode to read-request-read
Subtract retcode from read-request-remaining
end-if
If retcode = 0 or errno = 35 then
Move zero to read-request-remaining
end-if
end-perform.

Read-TCP-exit.
exit.

*

* % ok F * *

* Subroutine:

A Beginner's Guide to MVS TCP/IP Socket Programming

224

A Beginner's Guide to MVS TCP/IP Socket Programming

* Send data over a socket connection
*

* * * *

Send-TCP.
move soket-write to ezaerror-function.
move send-request-len to send-request-remaining.
move 0 to send-request-sent.
Perform until send-request-remaining = 0
Call 'EZASOKET' using soket-write
socket-descriptor
send-request-remaining
send-buffer-byte (send-request-sent + 1)
errno
retcode
If retcode < 0 then
move 'Write call failed' to ezaerror-text
perform write—ezaerror-msg thru
write—ezaerror-msg-exit
go to exit-close-socket
end-if
add retcode to send-request-sent
subtract retcode from send-request-remaining
If retcode = 0 then
Move zero to send-request-remaining
end-if
end-perform.

Send-TCP-exit.
exit.

D.2 C Version of EZACICSC

/* This is a C version of EZACICSC *x/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <inet.h>

#include <socket.h>

#include <tcperrno.h>

#include <errno.h> /* required to make "errno" variable available */
#include <netdb.h> /* should not precede #include <manifest.h> on MVS */
f#define recv read /* DOCUMENTATION ERROR! */

/* "bug compatible"/ease of use correction */
#define ebecdic2ascii (buffer, length)

ezacic04 (buffer, (long*) (0x80000000]| (long) &length)) ;
#define ascii2ebcdic (buffer, length)

ezacic05 (buffer, (long*) (0x80000000]| (long) &length)) ;

long retcode ;

/* DIS.H ALTERNATIVE */
char disMsgBuffer[300];
#ifndef _ stdio_h
#include <stdio.h>

A Beginner's Guide to MVS TCP/IP Socket Programming 225

A Beginner's Guide to MVS TCP/IP Socket Programming

#endif

#define disfloat (x) sprintf (disMsgBuffer, #x
#define disint (x) sprintf (disMsgBuffer, #x
#define disshort (x) sprintf (disMsgBuffer, #x
#define dislong(x) sprintf (disMsgBuffer, #x
#define disu(x) sprintf (disMsgBuffer, #x
#define disul (x) sprintf (disMsgBuffer, #x
#define disstr (x) sprintf (disMsgBuffer, #x
#define disstr8(x) sprintf (disMsgBuffer, #x
#define dischar (x) sprintf (disMsgBuffer, #x

"=%1g\n" ,x); disCics()
"=%i\n" ,x); disCics()
"=%i\n" ,x); disCics()
"=%1i\n" ,x); disCics()
"=%u\n" ,x); disCics()
"=%lu\n" ,x); disCics()
"=\"%$s\"\n" ,x); disCics()
"=\"%8.8s\"\n" ,x); disCics|()
"='%c'\n" ,x); disCics()

#define dishex(x) sprintf (disMsgBuffer, #x "=X'%8.8X'\n" ,x); disCics()
#define say (x) sprintf (disMsgBuffer, #x ".\n"); disCics()

void disCies()
{

unsigned long 1 ;

1 = strlen(disMsgBuffer);

exec CICS writeq td queue ("CSMT") from(disMsgBuffer) length(l) nohandle;
}

void pgmExit ()
{
if (retcode < 0) exec CICS abend abcode ("TRBB")

exec CICS return ;

}

void writeCics(char * message)
{
char buffer[200];
sprintf (buffer, "%s, errno=%li, retcode=%li.\n",message,errno, retcode);
exec CICS writeq td queue ("CSMT") from(buffer)
length (strlen (buffer)) nohandle;
}

long checkEib (char * what)
{
if (dfheiptr->eibresp| |dfheiptr->eibresp2) {
sprintf (disMsgBuffer, "%$s CICS call failed, resp=%1li, resp2=%li\n",
what, dfheiptr->eibresp , dfheiptr->eibresp2);
} else {
sprintf (disMsgBuffer, "$s CICS call OK\n",6what);
} /* endif */
disCics();
return dfheiptr->eibresp ;

}

int main(int argc,char**argv)
{
char * sendMessage ;
unsigned long receiveBufferSize = 1000 ;
unsigned long receivedBytes ;
unsigned long sentBytes ;
unsigned long messageLength ;
unsigned short length ;
unsigned long sockid ;
unsigned long ascii ;
char * receiveBuffer ;
int taskFlag = 1 ; /* true */
unsigned long recvFlag = 0 ;
char endTestField[4] ;
char asciiEnd [4] = { 101,110,100,0 } ;

A Beginner's Guide to MVS TCP/IP Socket Programming

226

A Beginner's Guide to MVS TCP/IP Socket Programming

/* */
/* program"s variables */
/* */

struct clientid clientidLstn ;

struct TcpSocketParm

{

unsigned long giveTakeSocket ;
unsigned char lstnName [8] ;
unsigned char lstnSubtaskname [8] ;
unsigned char lstnText [6] ;
unsigned char filler [29] ;
unsigned char alignchar ;

struct sockaddr_in socketAddress ;
} *pTcpSocketParm ;

receiveBuffer = (char*)malloc (receiveBufferSize);

/* exec CICS handle condition not suported by CICS C support */

/* invreq (invregErrSec) */
/* ioerr (ioerrSec) */
/* enddata (enddataSec) */
/* lengerr (lengerrSec) */
/* nospace (nospaceErrSec) */
/* giderr (giderrSec) */
/* itemerr (itemerrSec) */

writeCics ("TRBB transaction start up");

exec CICS address eib(dfheiptr); /* Not automatic for C CICS */
checkEib ("ADDRESS") ;

exec CICS retrieve set (pTcpSocketParm) length (length);
checkEib ("RETRIEVE") ;

/*disshort (length); *//* is set by the call */
/*disint (pTcpSocketParm) ; */

disstr8(pTcpSocketParm—>1lstnName);
disstr8(pTcpSocketParm—>lstnSubtaskname);
disint (pTcpSocketParm—->giveTakeSocket) ;

disint (pTcpSocketParm—->socketAddress.sin_family);
disint (pTcpSocketParm—>socketAddress.sin_port) ;
dishex (pTcpSocketParm—->socketAddress.sin_addr);

/* */
/* issue "takesocket" to acquire a socket */
/* which was given by listen program. */
/* */

memset ((void*) &clientidLstn, 0, sizeof (clientidLstn));
clientidLstn.domain = AF_INET ;

memcpy (clientidLstn.name , pTcpSocketParm—->lstnName ,8);
memcpy (clientidLstn.subtaskname , pTcpSocketParm->lstnSubtaskname ,8);

retcode = takesocket (&clientidLstn , pTcpSocketParm—->giveTakeSocket) ;

if (retcode < 0) {
writeCics ("takesocket fail");

A Beginner's Guide to MVS TCP/IP Socket Programming

227

A Beginner's Guide to MVS TCP/IP Socket Programming

pgmExit () ;
} else {
writeCics ("takesocket successful");
} /* endif */

sockid = retcode ;

sendMessage = "Task starting thru CICS/TCPIP interface"
messagelLength = strlen(sendMessage) ;

ascii = memcmp (pTcpSocketParm—->lstnText, "EBCDIC", 6) ;
disstr (pTcpSocketParm—->1lstnText);

disint (ascii);

if (ascii) ebcdic2ascii(sendMessage ,messagelLength);

retcode = write (sockid , sendMessage , messagelLength);
if (retcode < 0) { writeCics("write socket fail"); pgmExit(); }

sentBytes = retcode ; disint (sentBytes);

do {
/* */
/* issue "readv" socket to receive input data from client *x/
/* */

receivedBytes = recv(sockid, receiveBuffer, receiveBufferSize, recvFlag);
disint (receivedBytes);

retcode = receivedBytes ;

* (receiveBuffer+receivedBytes) = 0 ; /* disstr requirement */

say (Before translation);

disstr (receiveBuffer);

if (retcode < 0) { writeCics("read socket fail"); pgmExit(); }

if (ascii) ascii2ebcdic (receiveBuffer, receivedBytes);

say (After translation);

disstr (receiveBuffer);

/* */
/* echo receiving data *x/
/* */

endTestField [3] = 0 ;
memcpy (endTestField, receiveBuffer, 3);
/* if (!strcmp (endTestField,"end")) { */
if (!strcmp(endTestField,asciiEnd)) ({
say(end indication received);
taskFlag = 0 ; /* false */
sendMessage = "connection end" ;
messagelLength = strlen (sendMessage) ;
/*if (ascii) ebecdic2ascii (sendMessage,messagelength); */
retcode = write(sockid, sendMessage, messageLength);
if (retcode < 0) {
writeCics ("write socket fail pgm end msg");
POmEXit () ;
} /* endif */

} /* endif */

/* @ echo message here with "data received" text? */
#ifdef NOT

sendMessage = "data received " ;

messagelLength = strlen (sendMessage) ;

if (ascii) ebcdic2ascii (sendMessage,messagelength);

retcode = write(sockid, sendMessage, messagelLength) ;

A Beginner's Guide to MVS TCP/IP Socket Programming 228

A Beginner's Guide to MVS TCP/IP Socket Programming

#endif
retcode = write(sockid, receiveBuffer, receivedBytes);

if (retcode < 0) { writeCics ("Write socket fail"); pgmExit();

sentBytes = retcode ;
dislong (sentBytes) ;

} while (taskFlag); /* enddo */

/* */
/* close "accept descriptor" */
/* */
retcode = close (sockid);
writeCics("close socket");
/*
invreqErrSec : writeCics("interface is not active"); pgmExit ();
ioerrSec : writeCics("ioerr occurrs"); pgmExit ();
lengerrSec : writeCics("lengerr error"); pgmExit ();
nospaceErrSec : writeCics("nospace condition"); pgmExit ();
giderrSec : writeCics("giderr condition"); pgmExit ();
itemerrSec : writeCics ("itemerr error"); pgmExit ();
enddataSec : writeCics("retrieve data can not be found"); pgmExit();
*/
}
E.O Appendix E. Sample REXX Socket Programs

This appendix contains the following two sets of sample REXX socket

programs:

1. A sample iterative server and associated client. The programs use

stream sockets, and they are written in REXX.

}

2. A sample implementation of a NETSTAT command in NetView. The NETSTAT
REXX program is invoked from the NetView operator screen, it connects

to the NETSTATS REXX server that runs in a batch TSO job. The NETSTAT

parameters are passed to the NETSTATS REXX that issues the actual

NETSTAT command with a STACK option, collects to output lines, and

transfers them back to the NETSTAT REXX client in the NetView address

space.

[&al
—

(sl (3]
{OSH (\V]

REXX Client

REXX Server

NetView NETSTAT Client REXX
NETSTAT Server REXX

[sal
N

E.1 REXX Client

/* REXX - Simple MVS TCP/IP Client */
if ,arg(l,'E') then do
say 'Please specify hostname port bytesToSend'
exit
end

parse arg hostname port bytesToSend

service
socketsetsize

'T18ATCP' /* MUST be TCP/IP jobname */
10 /* number of preallocated sockets */

A Beginner's Guide to MVS TCP/IP Socket Programming

229

A Beginner's Guide to MVS TCP/IP Socket Programming
subtaskid = 'RBB' /* any name */

"alloc f(systcpd) da('sysl.tcpparms (tcpdata)') shr"
/* Prevent message EZY1372W Dataset *.TCPIP.DATA not found */

parse value check ('socketsetlist', socket ('socketsetlist')) with ids
do while ids,="'"

parse var ids id ids

parse value socket ('terminate',id) with rc

if rc,=0 then say 'No cleanup was needed for id=' id
end

call check 'initialize',6 socket('initialize', subtaskid, socketsetsize, service)

/*af_inet = 2*/ /* not required */
parse value check ('socket', socket ('socket',af_inet, 'SOCK_STREAM',6 'TCP')) with socket
say 'socket id is' socket

parse value check ('gethostbyname', socket ('gethostbyname', hostname)) with ipaddress otheraddresses
say 'ipaddress="'ipaddress'"'
if otheraddresses,='' then say 'otheraddresses="'otheraddresses'"'

call check 'connect',6 socket ('connect', socket,af inet port ipaddress)

/* send a message of just 'A' characters */

parse value check('send', socket ('send', socket,copies('A',bytesToSend))) with bytesSent
left = bytesToSend-bytesSent

if left>0 then say left 'bytes left.'

call check 'close socket', socket('close', socket)
call check 'terminate' , socket ('terminate’', subtaskid) with rc
exit

check:procedure
parse arg callname, returnstring
parse var returnstring rc rest
if rc=0 then do;say callname 'call successfull.'; return rest;end
else do;say callname 'call failed, rc='rc', reason='rest;exit;end

E.2 REXX Server

/* REXX - Simple MVS TCP/IP Server */

if ,arg(l,'E') then do

say 'Please specify hostname port bytesExpected
exit

end

parse arg hostname port bytesExpected

service = 'T18ATCP' /* MUST be TCP/IP jobname */
socketsetsize = 10 /* number of preallocated sockets */
subtaskid = 'RBB' /* any name */

"alloc f(systcpd) da('sysl.tcpparms (tcpdata)') shr"
/* Prevent message EZY1372W Dataset *.TCPIP.DATA not found */

parse value check ('socketsetlist', socket ('socketsetlist')) with ids
do while ids,="'"

parse var ids id ids

parse value socket ('terminate',id) with rc

if rc,=0 then say 'No cleanup was needed for id=' id
end

A Beginner's Guide to MVS TCP/IP Socket Programming 230

A Beginner's Guide to MVS TCP/IP Socket Programming

call check 'initialize',6K socket('initialize', subtaskid, socketsetsize, service)

af _inet = 2
parse value check('socket', socket ('socket',af_inet, 'SOCK_STREAM',6 'TCP')) with socket
say 'socket is' socket

ipaddress = 0 /* equivalent of INADDR_ANY */
call check 'bind',6 socket ('bind', socket,af_inet port ipaddress)

backlog = 3 ; /* or any other value you'd like */
call check 'listen', socket ('listen', socket,backlog)

say 'Waiting for connection request from client.'
parse value check('socket', socket ('accept',6 socket)) with newsocket clientdomain clientport clientadc

say 'newsocket = "'newsocket'"'

say 'clientdomain = "'clientdomain'"'
say 'clientaddress = "'clientaddress'"'
say 'clientport = "'clientport'"'

parse value check ('gethostbyaddr', socket ('gethostbyaddr', clientaddress)) with clientname
say 'clientname = "'clientname'"'

say 'Waiting for message to be received.'
message = ''
receivedsofar = 0
do while receivedsofar<bytesExpected
parse value check('read',6 socket ('read',6 newsocket)) with length data
if length ,=length(data) then say 'length discrepancy.'
message = message| |data
receivedsofar = receivedsofar + length
end

/* For test purposes, we usually send messages filled with all the same character */
/* Rather than displaying the message, we verify whether this is the case indeed */
firstchar = left (message, 1)

if verify (message,firstchar)>0 then say 'received: "'message'" =' c2x(message)

else say length "characters '"firstchar"' (X'"c2x(firstchar)"') received."

call check 'close newsocket', socket ('close', newsocket)

call check 'close socket' , socket ('close', socket)
call check 'terminate' , socket ('terminate', subtaskid)
exit

check:procedure
parse arg callname, returnstring
parse var returnstring rc rest
if rc=0 then do;say callname 'call successfull.'; return rest;end
else do;say callname 'call failed, rc='rc', reason='rest;exit;end

E.3 NetView NETSTAT Client REXX

/* REXX */

/* */
/* */
/* Name: NETSTAT - NetView REXX frontend to NETSTAT server */
/* */
/* Function: Accepts Netstat command parameters, passes them */
/* to netstat server and displays result from netstat */
/* server. */
/* */

A Beginner's Guide to MVS TCP/IP Socket Programming 231

A Beginner's Guide to MVS TCP/IP Socket Programming

/* Interface: Same as NETSTAT command - except STACK and REPORT */
/* */
/* Logic: This REXX is used as a frontend rexx to */
/* the TCP/IP NETSTAT command from NetView. */
/* 1. Connects to netstat server at TCP port 6000 */
/* 2. Sends netstat parameters to server */
/* 3. Receives response from netstat server and */
/* displays result lines */
/* */
/* Returncode: RC = 0, processing OK */
/* Everything else is non-successful returncode from */
/* socket interface. */
/* */
/* Written: April 25, 1995 at ITSO Raleigh */
/* */
/* Modified: */
/* */
/* */
dotrace = 0 /*Controls tracing */
/*dotrace = 1 for trace */

netport = '6000' /*Server port number */
netserver = 'mvsl8’ /*Server host name */
subtaskid = opid() /*Subtask id = operator */
if dotrace then say 'Subtaskid = 'subtaskid
parse arg p0 pl p2 p3 p4 p5 p6 p7 p8 p9
if dotrace then say 'Arguments passed = ' p0 pl p2 p3 p4 p5 p6 p7 p8 p9
/* */
/* */
/* All socket calls are performed by subroutine DoSocket */
/* */
/* */
sockval = DoSocket ('Terminate') /*Ensure clean interface*/
if dotrace then say 'Terminate returned: 'sockval
/* */
/* */
/* Initialize REXX socket interface */
/* */
/* */
sockval = DoSocket ('Initialize', subtaskid)
if dotrace then say 'Initialize returned: 'sockval
if sockrc <> 0 then do

say 'Socket initialize failed, rc='sockrc

say sockval

exit (sockre)
end
/* */
/* */
/* Get IP address(es) of server host */
/* */
/* */

servipaddr = DoSocket ('Gethostbyname', netserver)
if dotrace then say 'Gethostbyname returned: 'servipaddr
if sockrc <> 0 then do

say 'Gethostbyname failed, rc='sockrc

say sockval

x=Doclean

exit (sockrce)

end
parse value servipaddr with sl s2 s3 s4 s5 s6 s7 s8 s9
y=0
doi=1+t%to 9
mystring = 'sipaddr.i = s'||i

A Beginner's Guide to MVS TCP/IP Socket Programming

232

A Beginner's Guide to MVS TCP/IP Socket Programming

interpret mystring

if sipaddr.i <> '' then y=y+l
if dotrace then say 'sipaddr.'i' = 'sipaddr.i
end
sipaddr.0 = y
if dotrace then say 'Number of IP addresses = 'sipaddr.O
/*
/*

/* Get a socket and try to connect to the server

/*

/* If connect fails (ETIMEDOUT), we must close the socket,
/* get a new one and try to connect to the next IP address

/* in the list, we received on the gethostbyname call.
/*

/*

i=1

connected = 0
do until (i > sipaddr.0 | connected)
sockdescr = DoSocket ('Socket')
if sockrc <> 0 then do
say 'Socket failed, rc='sockrc
x=Doclean
exit (sockrce)
end
name = 'AF_INET '| |netport||' '||sipaddr.i
sockval = DoSocket ('Connect', sockdescr, name)
if sockrc = 0 then do
connected =1
end
else do
sockval = DoSocket ('Close', sockdescr)
if sockrc <> 0 then do
say 'Close failed, rc='sockrc
x=Doclean
exit (sockrce)
end
end
i=1i+1
end
if ,connected then do
say 'Connect failed, rc='sockrc
say sockval
x=Doclean
exit (sockrce)
end
netstatcmd = p0 pl p2 p3 p4 p5 p6 p7 P8 p9
if dotrace then say 'Command='netstatcmd

/*

/*
/* Send the NETSTAT command to the NETSTAT server
/*

/*
sockval = DoSocket ('Write', sockdescr, netstatcmd)
if dotrace then say 'Write returned: 'sockval
if sockrc <> 0 then do

say 'Write failed, rc='sockrc

x=Doclean

exit (sockrce)
end

/*

/*
/* Read the response from the NETSTAT server

A Beginner's Guide to MVS TCP/IP Socket Programming

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

233

A Beginner's Guide to MVS TCP/IP Socket Programming

/* Display output lines from the netstat command */
/* */
/* */
readlen =1

resplen = 0

respdata = ''

parse upper value p0 with closedown
do until readlen = 0
readdata = DoSocket ('Read', sockdescr)
if sockrc <> 0 then do
say 'Read failed, rc='sockrc
x=Doclean
exit (sockrce)
end
if dotrace then say 'Server returned ' readdata
parse value readdata with readlen readrest
If readlen > 0 then do
respdata = respdata| | readrest
resplen = resplen + readlen

end

if closedown = 'CLOSE' then readlen = 0
end
If dotrace then do

say 'Total length = 'resplen

say 'Total data = 'respdata
end

If resplen > 0 then do until resplen ,> 0
eol = pos('00'X, respdata)
len = eocl - 1
line = substr (respdata, 1, len)

resplen = (resplen - eol)

respdata = substr (respdata, eol+l, resplen)

say line
end
/* */
/* */
/* Terminate socket interface */
/* */
/* */

sockval = DoSocket ('Terminate')
if dotrace then say 'Terminate returned; 'sockval
if sockrc <> 0 then do

say 'Socket Close failed, rc='sockrc

say sockval

exit (sockre)

end
Exit (0)
/* */
/* */
/* Doclean Procedure. */
/* */
/* If a socket call failed, and we were about to exit this */
/* Rexx application, you should close the socket and terminate the */
/* socket interface. */
/* */
/* */
Doclean:

sockval = DoSocket ('Close', sockdescr)

sockval = DoSocket ('Terminate')
return sockres
/* */
/* */

A Beginner's Guide to MVS TCP/IP Socket Programming 234

/*
/*
/*
/*
/*
/*
Do

re

A Beginner's Guide to MVS TCP/IP Socket Programming

DoSocket procedure. */
*/
Do the actual socket call, and parse the return code. */
Return the rest of string returned from socket call. */
*/
*/
Socket:
numargs = ARG () /*Number of passed args */
argstring = '' /*Init arg string */
if dotrace then do /*Tracepoint */

say 'DoSocket subroutine'
say ' — Number of args = 'numargs
end
do subix=1 to numargs
if dotrace then do
say ' - arg('subix') = 'arg(subix)
end
argstring = argstring||'arg('subix')'
if subix<numargs then do
argstring = argstring]||',"'
end
end

/*Trace entry to routine*/
/*Trace number of args */

/* */
/*Build argument string */
/*Tracepoint */
/*Trace each argument */
/* */

/*for the socket call */
/*If not last argument -*/

interpret 'Parse value Socket ('||argstring||') with sockrc sockres'

if dotrace then do
say ' - return code = 'sockrc
say ' - return string = 'sockres
end
turn sockres

/*add a comma */
/* */
/* */
/*Tracepoint */
/*Trace returncode */
/*Trace return string */
/* */

/*Return socket result */

E4NETSTAT Server REXX

/* REXX */

/* */
/* */
/* Name: NETSTATS - NETSTAT server */
/* */
/* Function: REXX Socket NETSTAT server. This is an iterative */
/* socket server, that serves netstat command requests */

/* from clients. Clients send the netstat parameters, */
/* this server does the actual netstat command, picks */
/* up the netstat output and returns it to the client. */
/* */
/* Client example is NETSTAT REXX in NetView. */
/* */
/* Interface: - none - */
/* */
/* Logic: This server binds to TCP port 6000. */
/* Processing is done in a never ending loop: */
/* 1. Accept connection request */
/* 2. Receive netstat parameters from client */
/* 3. Invoke netstat command with stack option */
/* 4. Pull out stacked netstat output lines */
/* 5. Send lines back to client - each line terminated */
/* by a X'00' byte */
/* 6. Go and wait for anew connection request */
/* */
/* Returncode: RC = 0, processing OK */
/* Everything else is non-successful returncode from */
/* socket interface. */
/* */
/* Written: April 25, 1995 at ITSO Raleigh */

A Beginner's Guide to MVS TCP/IP Socket Programming

235

A Beginner's Guide to MVS TCP/IP Socket Programming

/* */
/* Modified: */
/* */
/* */
dotrace = 0 /*Controls tracing */
/*dotrace = 1 for trace */
servport = '6000' /*Server port number */
subtaskid = 'netstats’ /*Subtask id */
/* */
/* */
/* All socket calls are performed by subroutine DoSocket */
/* */
/* */
sockval = DoSocket ('Terminate') /*Ensure clean interface*/
/* */
/* */
/* Initialize REXX socket interface */
/* */
/* */
sockval = DoSocket ('Initialize', subtaskid)
if sockrc <> 0 then do
say 'Initialize failed, rc='sockrc
exit (sockre)
end
/* */
/* */
/* Obtain a socket, bind it to our server port on INADDR ANY and */
/* issue a listen call. */
/* */
/* */
sockdescr = DoSocket ('Socket')
if sockrc <> 0 then do
say 'Socket failed, rc='sockrc
x=Doclean
exit (sockre)
end
sockval = DoSocket ('Bind', sockdescr, 'AF_INET' servport 0)
if sockrc <> 0 then do
say 'Bind failed, rc='sockrc
x=Doclean
exit (sockrce)
end
sockval = DoSocket ('Listen', sockdescr)
if sockrc <> 0 then do
say 'Listen failed, rc='sockrc
x=Doclean
exit (sockre)
end
/* */
/* */
/* Enter iterative server loop, waiting for a connection request */
/* */
/* */
Do forever
sockval = DoSocket ('Accept', sockdescr)
if sockrc <> 0 then do
say 'Accept failed, rc='sockrc
x=Doclean
exit (sockrce)
end
parse value sockval with newsock
/* */

A Beginner's Guide to MVS TCP/IP Socket Programming

236

/*
/*
/*
/*
/*
/*
/*
/*

A Beginner's Guide to MVS TCP/IP Socket Programming

Read netstat parameters from client

If client sends a CLOSE command, we will terminate the
iterative server loop.

We will add a stack parameter to the passed parameters.

Ensure that client did not send a stack or a report option.

*/
*/
*/
*/
*/
*/
*/

sockval = DoSocket ('Read', newsock)
if sockrc <> 0 then do
say 'Read failed, rc='sockrc
x=Doclean2
exit (sockrc)

end
parse upper value sockval with resplen netcmdi
If substr(netcmdi,1,5) = 'CLOSE' then do

say 'Server is terminating as result of a CLOSE command'

retstring = 'Server Closing Down'||'00'X
sockval = DoSocket ('Write', newsock, retstring)
sockval = DoSocket ('Shutdown', newsock, read)

sockval = DoSocket ('Close', sockdescr)
sockval = DoSocket ('Terminate')
exit (0)
end
if dotrace then say 'Received data = 'netcmdi
antparms = words (netcmdi)
netcemd = !

if antparms > 0 then do i=1 to antparms
subparm = word (netcmdi, i)

select
when substr (subparm,1,4) = 'STAC' then nop
when substr (subparm,1,3) = 'REP' then nop
Otherwise netcmd = netemd||' '||word(netcmdi, i)
end
end
netcmd = 'STACK ' | |netcmd

if dotrace then say 'Command = NETSTAT 'netcmd

/*
/*
/*
/*
/*
/*
/*

Do the actual NETSTAT command with the passed parameters
Pull out the output lines from the stack, add a line
terminating character to each line including the last and
send the full return buffer back to the client.

/*

msgstat=MSG ()
z=MSG ("OFF")
address tso "NETSTAT" netcmd
Xy = queued()
If dotrace then say 'Number of lines returned='xy
retstring = "'
do i=1 to xy
index = xy-i+l
pull lin.index
end
do i =1 to xy
retstring=retstring||1lin.i||'00'X

end
z=MSG (msgstat)
if retstring = '' then do
retstring = 'No response from NETSTAT command'||'00'X
end

A Beginner's Guide to MVS TCP/IP Socket Programming

*/

*/
*/
*/
*/
*/
*/
*/
*/

237

A Beginner's Guide to MVS TCP/IP Socket Programming

sockval = DoSocket ('Write',

newsock, retstring)

if dotrace then say 'Write returned: 'sockval
if sockrc <> 0 then do
say 'Write failed, rc='sockrc
x=Doclean2
exit (sockrc)
end
/* */
/* */
/* Close the socket and wait for a new connection */
/* */
/* */
sockval = DoSocket ('Close', newsock)
if sockrc <> 0 then do
say 'Socket Close failed, rc='sockrc
x=Doclean
exit (sockrc)
end
end
/* */
/* */
/* Doclean Procedure. */
/* */
/* If a socket call failed, and we are about to exit this */
/* Rexx application, close the socket and terminate the */
/* socket interface. */
/* */
/* */
Doclean:
if dotrace then do
say 'Cleaning up socket descriptor 'sockdescr
end
sockval = DoSocket ('Close', sockdescr)
sockval = DoSocket ('Terminate')
return sockres
Doclean2:
if dotrace then do
say 'Cleaning up socket descriptor = 'sockdescr
say ' and socket descriptor = 'newsock
end
sockval = DoSocket ('Close', sockdescr)
sockval = DoSocket ('Close', newsock)
sockval = DoSocket ('Terminate')
return sockres
/* */
/* */
/* DoSocket procedure. */
/* */
/* Do the actual socket call, and parse the return code. */
/* Return rest of string returned from socket call. */
/* */
/* */
DoSocket:
numargs = ARG () /*Number of passed args */
argstring = '' /*Init arg string */
if dotrace then do /*Tracepoint */

say 'DoSocket subroutine'
say ' — Number of args =
end
do subix=1 to numargs

'numargs

/*Trace entry to routine*/
/*Trace number of args */
/* */

/*Build argument string */

A Beginner's Guide to MVS TCP/IP Socket Programming

238

A Beginner's Guide to MVS TCP/IP Socket Programming

if dotrace then do /*Tracepoint */
say ' - arg('subix') = 'arg(subix) /*Trace each argument */
end /* */
argstring = argstring||'arg('subix')' /*for the socket call */
if subix<numargs then do /*If not last argument -*/
argstring = argstring]||',"' /*add a comma */
end /* */
end /* */
msgstat = msg() /*Save message status */
z = msg("OFF") /*Turn messages off */
interpret 'Parse value Socket ('||argstring||') with sockrc sockres'
z = msg(msgstat) /*Restore message status*/
if dotrace then do /*Tracepoint */
say ' - return code = 'sockrc /*Trace returncode */
say ' - return string = 'sockres /*Trace return string */
end /* */
return sockres /*Return socket result */

F.0 Appendix F. Sample PLI Socket Programs

This appendix contains a sample iterative PL/I server and associated
client. The programs use stream sockets, and they are written in PL/I.

F.l PL/I Server

F.2 PL/I Server

F.1 PL/I Server

/* PL/I Stream Socket Server */
pserver: proc (parm)options (main);

/* The extended sockets API routine */
dcl ezasoket entry options(retcode,asm, inter) ext;
dcl function char(16) ;

/* Regular C routines to convert Internet addresses */
dcl inet_addr entry(char(16)) options (retcode, asm, inter) ext ('INETQADD') ;
dcl inet_ntoa entry(fixed(31l)bin) options(retcode,asm, inter,byvalue) ext ('INET@NTA');

/***/

/* */
/* Subroutines */
/* */

/***/

/* Routine to parse the parameterlist */
word:procedure (string, wordno) returns (char (255) var) ;
dcl string char (*)var;
dcl wordno fixed(31l)bin;

del i fixed(31)bin;
dcl pl fixed(31)bin;
dcl p2 fixed(31l)bin init (0);

do i=1 to wordno;

if p2>length(string) then return('');

pl=verify (substr(string,p2+1),"' ');

if pl=0 then return('');

pl=pl+p2;

p2=index (substr (string,pl),"' ');

if p2=0 then p2=length(string)+l;else p2=p2+pl-1;

A Beginner's Guide to MVS TCP/IP Socket Programming 239

A Beginner's Guide to MVS TCP/IP Socket Programming

end;
return (substr (string, pl,p2-pl));
end word;

/* Routine to check parameter validity */
numeric:procedure (num_string)returns (bit (1));
dcl num_string char (100)var;
return (verify (num_string, '0123456789')=0);
end numeric ;

/* Routines to convert strings */
z2var : procedure (zstring)returns (char (255)var);
dcl zstring char(256);
dcl p fixed(31l)bin;
p=index (zstring,low(1));
if p=0 then return(zstring);
else return(substr(zstring,1l,p-1));
end z2var ;
var2z : procedure (varstring)returns (char (256));
dcl varstring char (255)var;
return (varstring| |low(1l));
end var2z ;

/***/

/*
/* Subroutine to check results of all socket API calls
/*

/***/

sock_check:procedure (function, errno, retcode) returns (bit(1));

dcl function char (16) ; /* function name */
dcl retcode fixed bin(31l) ; /* return code */
dcl errno fixed bin(31) ; /* error number */

put skip edit (function) (a);

if retcode >=0 then do;

put edit (' completed OK.') (a) ;

return('0'B);

end; else do;

put edit (' failed, errno=',errno) (a,£f(9)) ;

return('1'B);

end;
end sock_check;

/* Routine to send records */
sendRecord : procedure (socket , recordBuffer , recordLength)
returns (bit (1)) ;

/* parameter declarations */

dcl socket fixed (15)bin ;
dcl recordBuffer char (*) ;
dcl recordLength fixed(31)bin ;

/* internal variable declarations */

dcl bytesSent fixed(31l)bin init (0) ;

dcl bytesToBeSent fixed(31)bin ;

dcl remainingBytes fixed(31)bin init (recordLength);

function = 'WRITE' ;
sendloop : do while (remainingBytes >0);
bytesToBeSent = remainingBytes ;
call ezasoket (
function ’

A Beginner's Guide to MVS TCP/IP Socket Programming

240

A Beginner's Guide to MVS TCP/IP Socket Programming

socket ,
bytesToBeSent ,
substr (recordBuffer,bytesSent+1) ,
errno ,
retcode) ;
if sock_check (function, errno, retcode) then stop ;
bytesSent = retcode ;
if bytesSent=0 then do ;
put skip list ('Connection broken while sending.');
return ('l'b) ;
end ;
put skip edit (bytesSent,' bytes have been sent.') (£(9),a);
remainingBytes = remainingBytes - bytesSent ;
end sendloop ;
put skip list ('Complete record sent.');
return ('0'b);
end sendRecord ;

/* Routine to receive records */
receiveRecord : procedure (socket , recordBuffer , recordLength)

returns (fixed (31)bin);

/* parameter declarations */

dcl socket fixed(15)bin ;
dcl recordBuffer char (*) ;
dcl recordLength fixed(31)bin ;

/* internal variable declarations */

dcl bytesReceived fixed(31l)bin init (0);
dcl bytesReceivedNow fixed(31)bin;

dcl bytesToBeReceived fixed(31)bin ;

dcl remainingBytes fixed(31)bin init (recordLength) ;
begin;

dcl receiveBuffer char (recordLength) ;

function = 'READ' ;

receiveloop : do while (remainingBytes >0);
bytesToBeReceived = remainingBytes ;
call ezasoket (
function ,
socket ,
bytesToBeReceived ,
receiveBuffer ,
errno ,
retcode) ;
if sock_check (function, errno, retcode) then stop ;
bytesReceivedNow = retcode ;
put skip edit (bytesReceivedNow,' bytes have been received.') (£(9),a);
if bytesReceivedNow=0 then do ;
put skip list ('Connection broken while receiving.');
return ('l'b) ;

end ;

substr (recordBuffer,bytesReceived+l,bytesReceivedNow) = receiveBuffer;
remainingBytes = remainingBytes - bytesReceivedNow ;

bytesReceived = bytesReceived + bytesReceivedNow ;

end receiveloop ;
put skip list('Complete record received.');
return ('0'b);
end;
end receiveRecord ;

/***/

A Beginner's Guide to MVS TCP/IP Socket Programming

241

A Beginner's Guide to MVS TCP/IP Socket Programming

/* */
/* Obtain information from JCL parameterlist (PARM=) */
/* */
/***/
dcl parm char (100)var; /* passed in JCL */

dcl tcpipjobname char(8) ; /* T18ATCP in Raleigh, ZTCPIP in La Hulpe */
dcl ownport fixed(15)bin init (0);

dcl recordlen fixed(31l)bin init (0);
dcl crecordlen char(100)var;
dcl cownport char (100) var;

tcpipjobname = word(parm,1);

cownport = word (parm, 2) ;
crecordlen = word (parm, 3) ;
if tcpipjobname=' '|,numeric (cownport) |,numeric (crecordlen) then do;

put skip list ('Usage: parm=''/tcp/ip-jobname ownport recordlength''');
call pliretc(4);

return ;
end;
ownport = cownport ;
recordlen = crecordlen ;

put skip data (ownport);
put skip data (recordlen);

/***/

/* */
/* INITAPI call defines TCP/IP subsystem in this MVS to be used */
/* NOTE: "tcpname" should be your TCP/IP's jobname *x/
/* */
/***/
dcl maxsoc fixed bin(15) init (255); /* largest socket # checked */
del 1 id ’ /* */

2 tcpname char (8) , [/* TCP/IP jobname */

2 adsname char(8) init (' '); /* local address space */
dcl subtask char(8) init ('SUBTASK'); /* task/path identifier */
dcl maxsno fixed bin(31) init (0); /* max descriptor assigned */
dcl retcode fixed bin(31) init (0); /* return code */
decl errno fixed bin(31) init (0); /* error number *x/

id.tcpname = tcpipjobname ;

function = 'INITAPI' ;
call ezasoket (function, maxsoc, id, subtask, maxsno, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

/***/

/* */
/* SOCKET call obtains a "socket" descriptor, no comms yet. *x/
/* */
/***/
function = 'SOCKET' ;

dcl af inet fixed bin(31) init(2); /* internet domain *x/
dcl type_stream fixed bin(31) init(1); /* two-way byte stream */
dcl proto fixed bin(31) init (0); /* prototype default */

call ezasoket (function, af inet, type_ stream, proto, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

dcl socket fixed bin (15); /* socket descriptor */
socket = retcode;

A Beginner's Guide to MVS TCP/IP Socket Programming 242

A Beginner's Guide to MVS TCP/IP Socket Programming

/***/

/* */
/* Execute BIND call */
/* */
/***/
function = 'BIND' ;
dcl 1 local_address, /* our socket address *x/
2 family fixed bin(15) init(2) , /* AF_INET = TCP/IP */
2 port fixed bin(15) , /* our own port *x/
2 address fixed bin(31) init (0) , /* accept any address */
2 reserved char (8); /* reserved */
local_address.port = cownport ; /* can not through init *x/

call ezasoket (function, socket, local_address, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

/***/

/* */
/* Execute LISTEN call */
/* */

/***/

function = 'LISTEN' ;

dcl backlog fixed bin(31) init(5) ; /* max length of pending queue */
call ezasoket (function, socket, backlog, errno, retcode);

if sock_check (function, errno, retcode) then stop ;

/***/

/* */
/* Execute ACCEPT call */
/* */
/***/
function = 'ACCEPT' ;

dcl 1 client_address like local_address ; /* our socket address */

call ezasoket (function, socket, client_address, errno, retcode);

if sock_check (function, errno, retcode) then stop ;

dcl newsocket fixed bin (15); /* new socket */
newsocket = retcode;

/***/

/* */
/* Who is our client? */
/* */

/***/

call inet_ntoa(client_address.address); /* call C inet_ntoa routine */
dcl dotted _address char(16) based(dotted_address_pointer);

unspec (dotted_address_pointer) = unspec(pliretv());
put skip edit ('Our client''s TCP/IP address "',
z2var (dotted_address), '" - port', client_address.port)

(a,a,a,£(5));
if client_address.family,=2 then put skip list ('Not AF_INET family.'); /* very unlikely */

/***/

/* */
/* Exchange a record */
/* */

/***/

begin;

A Beginner's Guide to MVS TCP/IP Socket Programming 243

A Beginner's Guide to MVS TCP/IP Socket Programming

dcl record char (recordlen);

if receiveRecord (newsocket, record, recordlen) then put skip list('receive failed.');
if sendRecord (newsocket, record, recordlen) then put skip list ('send failed.');

end;

/***/

/* */
/* Issue CLOSE calls for both sockets */
/* */

/***/

function = 'CLOSE' ;
call ezasoket (function, newsocket, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

call ezasoket (function, socket, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

/***/

/* */
/* TERMAPI call terminates the connection between this address space */
/* and the TCP/IP address space chosen by INITAPI *x/
/* */

/***/

function = 'TERMAPI' ;
call ezasoket (function);

call pliretc(0);

end pserver;

F.2 PL/I Server

/* PL/I Stream Socket Client */
pclient: proc(parm)options (main);

/* The extended sockets API routine */
dcl ezasoket entry options (retcode,asm, inter) ext;
dcl function char(16) ;

/* Regular C routines to convert Internet addresses */
dcl inet_addr entry(char(16)) options (retcode, asm, inter) ext ('INETQADD') ;
dcl inet_ntoa entry(fixed(31l)bin) options(retcode,asm, inter,byvalue) ext ('INET@NTA');

/***/

/* */
/* Subroutines */
/* */

/***/

/* Routine to parse the parameterlist */
word:procedure (string, wordno) returns (char (255) var) ;
dcl string char (*)var;
dcl wordno fixed(31l)bin;

del i fixed (31)bin;
dcl pl fixed (31)bin;
dcl p2 fixed(31l)bin init (0);

do i=1 to wordno;

A Beginner's Guide to MVS TCP/IP Socket Programming 244

A Beginner's Guide to MVS TCP/IP Socket Programming

if p2>length(string) then return('');

pl=verify (substr(string,p2+1),"' ');
if pl=0 then return('');
pl=pl+p2;
p2=index (substr (string,pl),"' ');
if p2=0 then p2=length(string)+l;else p2=p2+pl-1;
end;
return (substr (string, pl,p2-pl));
end word;

/* Routine to check parameter validity */
numeric:procedure (num_string)returns (bit (1));
dcl num_string char (100)var;

return (verify (num_string, '0123456789')=0);
end numeric ;

/* Routines to convert strings */
z2var : procedure (zstring)returns (char (255)var);
dcl zstring char(256);
dcl p fixed(31l)bin;
p=index (zstring,low(1));
if p=0 then return(zstring);
else return(substr(zstring,1l,p-1));
end z2var ;
var2z : procedure (varstring)returns (char (256));
dcl varstring char (255)var;
return (varstring| |low(1l));
end var2z ;

/***/

/*
/* Subroutine to check results of all socket API calls
/*

/***/

sock_check:procedure (function, errno, retcode) returns (bit(1));

dcl function char (16) ; /* function name */
dcl retcode fixed bin(31l) ; /* return code */
dcl errno fixed bin(31) ; /* error number */

put skip edit (function) (a);

if retcode >=0 then do;

put edit (' completed OK.') (a) ;

return('0'B);

end; else do;

put edit (' failed, errno=',errno) (a,£f(9)) ;

return('1'B);

end;
end sock_check;

/* Routine to send records */
sendRecord : procedure (socket , recordBuffer , recordLength)
returns (bit (1)) ;

/* parameter declarations */

dcl socket fixed (15)bin ;
dcl recordBuffer char (*) ;
dcl recordLength fixed(31)bin ;

/* internal variable declarations */

dcl bytesSent fixed(31l)bin init (0) ;

dcl bytesToBeSent fixed(31)bin ;

dcl remainingBytes fixed(31)bin init (recordLength);

A Beginner's Guide to MVS TCP/IP Socket Programming

245

A Beginner's Guide to MVS TCP/IP Socket Programming

function = 'WRITE' ;
sendloop : do while (remainingBytes >0);
bytesToBeSent = remainingBytes ;
call ezasoket (
function ,
socket ,
bytesToBeSent ,
substr (recordBuffer,bytesSent+1) ,
errno ,
retcode) ;
if sock_check (function, errno, retcode) then stop ;
bytesSent = retcode ;
if bytesSent=0 then do ;
put skip list ('Connection broken while sending.');
return ('l'b) ;
end ;
put skip edit (bytesSent,' bytes have been sent.') (£(9),a);
remainingBytes = remainingBytes - bytesSent ;
end sendloop ;
put skip list ('Complete record sent.');
return ('0'b);
end sendRecord ;

/* Routine to receive records */
receiveRecord : procedure (socket , recordBuffer , recordLength)

returns (fixed (31)bin);

/* parameter declarations */

dcl socket fixed(15)bin ;
dcl recordBuffer char (*) ;
dcl recordLength fixed(31)bin ;

/* internal variable declarations */

dcl bytesReceived fixed(31l)bin init (0);
dcl bytesReceivedNow fixed(31)bin;

dcl bytesToBeReceived fixed(31)bin ;

dcl remainingBytes fixed(31)bin init (recordLength) ;
begin;

dcl receiveBuffer char (recordLength) ;

function = 'READ' ;

receiveloop : do while (remainingBytes >0);
bytesToBeReceived = remainingBytes ;
call ezasoket (
function ,
socket ,
bytesToBeReceived ,
receiveBuffer ,
errno ,
retcode) ;
if sock_check (function, errno, retcode) then stop ;
bytesReceivedNow = retcode ;
put skip edit (bytesReceivedNow,' bytes have been received.') (£(9),a);
if bytesReceivedNow=0 then do ;
put skip list ('Connection broken while receiving.');
return ('l'b) ;

end ;

substr (recordBuffer,bytesReceived+l,bytesReceivedNow) = receiveBuffer;
remainingBytes = remainingBytes - bytesReceivedNow ;

bytesReceived = bytesReceived + bytesReceivedNow ;

end receiveloop ;

A Beginner's Guide to MVS TCP/IP Socket Programming 246

A Beginner's Guide to MVS TCP/IP Socket Programming

put skip list ('Complete record received.');
return ('0'b);
end;
end receiveRecord ;

/***/

/* */
/* Obtain information from JCL parameterlist (PARM=) */
/* */

/***/

dcl parm char (100)var; /* passed in JCL */

dcl tcpipjobname char(8) ; /* T18ATCP in Raleigh, ZTCPIP in La Hulpe */
dcl servername char(100);

dcl serverport fixed(15)bin init (0);

dcl namelen fixed(31l)bin init (0);

dcl recordlen fixed(31l)bin init (0);

dcl crecordlen char(100)var;

dcl cserverport char(100)var;

tcpipjobname = word(parm,1);

servername = word(parm, 2); namelen=length (servername) ;

cserverport = word(parm,3);

crecordlen = word (parm, 4) ;

if tcpipjobname=' ' |servername=' '|,numeric (cserverport) |,numeric(crecordlen) then do;

put skip list('Usage: parm=''/tcp/ip-jobname servername serverport recordlength''');
call pliretc(4);

return ;
end;

serverport = cserverport ;
recordlen = crecordlen ;

put skip data (servername);
put skip data (serverport);
put skip data(recordlen);

/***/

/* */
/* INITAPI call defines TCP/IP subsystem in this MVS to be used */
/* NOTE: "tcpname" should be your TCP/IP's jobname *x/
/* */
/***/
dcl maxsoc fixed bin(15) init (255) ; /* largest socket # checked */
del 1 id ’ /* */

2 tcpname char (8) , [/* TCP/IP jobname */

2 adsname char(8) init (' '); /* local address space */
dcl subtask char(8) init ('SUBTASK'); /* task/path identifier */
dcl maxsno fixed bin(31) init (0); /* max descriptor assigned */
dcl retcode fixed bin(31) init (0); /* return code */
decl errno fixed bin(31) init (0); /* error number *x/

id.tcpname = tcpipjobname ;

function = 'INITAPI' ;
call ezasoket (function, maxsoc, id, subtask, maxsno, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

/***/

/* */
/* SOCKET call obtains a "socket" descriptor, no comms yet. *x/
/* */

/***/

A Beginner's Guide to MVS TCP/IP Socket Programming 247

A Beginner's Guide to MVS TCP/IP Socket Programming

function = 'SOCKET' ;

decl af inet fixed bin(31) init(2); /* internet domain *x/
dcl type_stream fixed bin(31) init(1); /* two-way byte stream */
dcl proto fixed bin(31) init (0); /* prototype default */

call ezasoket (function, af inet, type_ stream, proto, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

dcl socket fixed bin (15); /* socket descriptor */
socket = retcode;

/***/

/* */
/* Prepare for CONNECT - common part */
/* */
/***/
dcl 1 name_id, /* server address in reqd. fmt.*/
2 family fixed bin(15) init (2), /* AF_INET: TCP/IP */
2 port fixed bin (15) , [/* port) of the server */
2 address fixed bin(31) , /* address) to be contacted *x/
2 reserved char (8); /* reserved *x/

name_id.port = serverport ;

/***/

/* */
/* Find out how the server address is specified: either/or: *x/
/* 1. as a "dotted decimal" address */
/* 2. as a symbolic address */
/* */

/***/

dcl hostaddr fixed(31l)bin;

call inet_addr (var2z (servername));

hostaddr = pliretv();

if hostaddr = -1 then do; /* this means the address was symbolic */

/***/

/* */
/* Find server address by means of GETHOSTBYNAME */
/* */

/***/

dcl 1 hostent based (hostentptr) ,
2 nameptr ptr ,
2 aliaslist ptr ,
2 family fixed(31)bin ,
2 hostaddrlen fixed(31l)bin ,
2 hostaddrlist ptr ;

function = 'GETHOSTBYNAME' ;
call ezasoket (function, namelen, servername, hostentptr, retcode);
if sock_check (function, errno, retcode) then stop ;

dcl hostname char (256) based (hostent .nameptr) ;

decl alias char (256) based;

dcl aliasptr (99) ptr based (hostent.aliaslist);

dcl hostaddrptr (99) ptr based (hostent .hostaddrlist);

dcl hostaddrn fixed (31)bin based;

put skip edit ('Full name of server host: "', z2var (hostname),'"') (a,a,a);

/***/

/* */

A Beginner's Guide to MVS TCP/IP Socket Programming 248

A Beginner's Guide to MVS TCP/IP Socket Programming

/* CONNECT call connects to the server */
/* */

/***/

function = 'CONNECT' ;

dcl addressIndex fixed(31l)bin ;

dcl dotted_address char(16) based(dotted address_pointer);

do addressIndex = 1 by 1 while (unspec (hostaddrptr (addressIndex)),=0) ;
name_id.address = hostaddrptr (addressIndex)->hostaddrn ;

call inet_ntoa(name_id.address); /* call C inet_ntoa routine */
unspec (dotted_address_pointer) = unspec(pliretv());
put skip edit ('Trying to contact TCP/IP address "', z2var (dotted_address),'"') (a,a,a);

call ezasoket (function, socket, name_id, errno, retcode);
if ,sock_check (function, errno, retcode) then leave ;
end ;

if unspec (hostaddrptr (addressIndex))=0 then do;
put skip list('Unable to contact any of the addresses of the specified server.');
stop;
end;
end; else do;

/***/

/* */
/* CONNECT call connects to the server */
/* */

/***/

function = 'CONNECT' ;

name_id.address = hostaddr ;

call ezasoket (function, socket, name_id, errno, retcode);
if sock_check (function, errno, retcode) then stop ;
end;

/***/

/* */
/* Find our local address and ("ephemeral") port */
/* */

/***/

dcl 1 local_address like name_id ; /* to get our local address */
function = 'GETSOCKNAME' ;
call ezasoket (function, socket, local_address, errno, retcode);
if ,sock_check (function, errno, retcode) then do;

call inet_ntoa(local_address.address); /* call C inet_ntoa routine */

unspec (dotted_address_pointer) = unspec(pliretv());

put skip edit ('Our local TCP/IP address "', z2var (dotted _address),'" - port', local_address.port)
(a,a,a, £(5));

if local_address.family,=2 then put skip list('Not AF_INET family.'); /* very unlikely */
end;

/***/

/* */
/* Exchange a record with the server and check whether *x/
/* thew echo is identical - as it should be. *x/
/* */

/***/
begin;

dcl echoRecord char (recordlen);
dcl recordSent char (recordlen);

A Beginner's Guide to MVS TCP/IP Socket Programming 249

A Beginner's Guide to MVS TCP/IP Socket Programming

recordSent=repeat ('A', recordlen-1);

if sendRecord (socket, recordSent, recordlen) then put skip list ('send failed.');
if receiveRecord (socket, echoRecord, recordlen) then put skip list ('receive failed.');

if recordSent=echoRecord then put skip list ('Echoed record identical.');
else put skip list ('Echoed record *not* identical.');

end;

/***/

/* */
/* SHUTDOWN call terminates the connection with the server */
/* */

/***/

function = 'CLOSE' ;
call ezasoket (function, socket, errno, retcode);
if sock_check (function, errno, retcode) then stop ;

/***/

/* */
/* TERMAPI call terminates the connection between this address space */
/* and the TCP/IP address space chosen by INITAPI *x/
/* */

/***/

function = 'TERMAPI' ;
call ezasoket (function);

call pliretc(0);

end pclient;

G.0 Appendix G. Socket Utilities for Sockets Extended Programs

Thi
dev
the
pro

s appendix contains a number of handy utility programs that were

eloped during the creation of this book. We document them here because
y may come in handy when you begin to develop your own Sockets Extended
grams.

TPICLNID Obtain Values for TCP/IP Client ID

TPIINTOA Convert IP Address to Character String

TPIIADDR Convert IP Address Character String to Full-word
TPIIOCTL Convert IOCTL Command Name to Command

TPIWAIT Place Calling Process in Wait

TPIRACF Interface to RACROUTE REQUEST=VERIFY User SVC
User SVC for RACROUTE REQUEST=VERIFY

TPIAUTH Issue RACROUTE REQUEST=AUTH for FACILITY Class

G.1 TPICLNID Obtain Values for TCP/IP Client ID

*

* ok ok * * *

hkhkkkhkkkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkkkkhkx

Name: TPICLNID

Function: Return address space name and TCB address as two
8—character fields.

* ok ok F * *

A Beginner's Guide to MVS TCP/IP Socket Programming

250

A Beginner's Guide to MVS TCP/IP Socket Programming

* Interface: Rl —> parameter list *
* +0 Pointer to address space name field (Out) *
* +4 Pointer to TCB address name field (Out) *
* *
* Logic: Find address space name via ASCB and TCB address via *
* CVT. Format TCB address into 8 bytes character field, *
* and return address space name and TCB address. *
* *
* Returncode: - none - *
* *
* Written: March 27'th 1994 at ITSO Raleigh *
* *
* Modified: *
* *
khkkhkhkkhkhkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhkkhkhhkkk
PRINT NOGEN
IHAASCB *ASCB layout
TPIWORK DSECT
DC 18F'0’ *Save Area
DORD DC D'O' *Decimal work word
*
ASNAMED DSECT
ASNAME DC CL8' ' *Address space name
TCBNAMED DSECT
TCBNAME DC CL8' ' *TCB address

*
TPICLNID INIT

USING

USING

USING

USING

SR
SLDL
STM
UNPK
NC
TR
ICM
BNZ
ICM
BNZ
MvVC
B
INITJBN EQU
MvVC
INITJOBS EQU
TERM
LTORG
TRHEX DC
END

'Find Address space
WORKLEN=256, MODE=31

TPIWORK, R13
R9, 0 (R1)
ASNAMED, R9
R10, 4 (R1)
TCBNAMED, R10
R3,X'10"
R3, 0 (R3)
R15, 12 (R3)
ASCB, R15
R3, 4 (R3)

R2,R2

R2, 4

R2,R3, DORD
TCBNAME, DORD
TCBNAME , =8X' OF '
TCBNAME, TRHEX
R14, 15, ASCBJBNI
INITJBN

R14,15, ASCBJBNS
INITJBN

ASNAME, =CL8' '
INITJOBS

*

ASNAME, 0 (R14)
*

RC=0

C'0123456789ABCDEF'

name and TCB address',6 RENT=YES,

*—> Address space name return field
*—> TCB address name return field

*—> CVT
*—> TCB Words
*—> Current ASCB (My ASCB)

*-> Current TCB (My TCB)
*Make ready for double shift
*0000000x xxxxxxx0

*Store for Unpack

*Unpack

*Remove F's

*Translate to EBCDIC

*—> Jobname if initiated
*If not zero, pointer is OK
*—> Jobname if start/logon
*If not zero, pointer is OK
*We did not find a jobname
*Job name is initialized

*Move in job name
*And out we go

*Hex to char translation

G.2 TPIINTOA Convert IP Address to Character String

A Beginner's Guide to MVS TCP/IP Socket Programming

251

A Beginner's Guide to MVS TCP/IP Socket Programming

khkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkkk

*

* Name:
*

Function:

Interface:

Logic:

Abends:
Returncode:
Written:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Modified:
*

TPIINTOA

Convert an IP address from a fullword network byte
order to 15 characters dotted decimal notation.

Rl -> parameter list with two pointers:

+0 -> fullword with IP address in network byte format

+4 -> 15 character return area, where IP address will
be returned in dotted decimal format.

* ok ok ok ok Ok Ok F F O *

This module is called from whenever another module needs*

to convert an IP address to dotted decimal format.
Output is returned in the format a human would type
it in. No leading zeroces if a part of the address is
less than 3 characters in length (a value above 99).

Example:
Input: X'09180221'
Output: CL15'9.24.2.33"
- none -

— none -

May 28'th 1994 at ITSO Raleigh

* ok ok ok ok ok ok Ok Ok Ok Ok Ok Ok F F O *

khkkhkhkkhkhkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhkkhkhhkk

*

WORKAREA DSECT

DC
DORD DC
WORK DC

INITSTR DC
DOTSTR DC
WORKSTR DC
*

TPIINTOA INIT

18F'0’ *Save area
D'O’

CL4' '

CL15' ' *Init string
CL15" . . . !

CL15"' '

'Build dotted string from fullword IP address',
RENT=YES, WORKLEN=512

USING WORKAREA,6R13

XXX . XXX . XXX .

Start by converting the fullword to a fixed character format:

xxx — where each part includes leading zeroes

* ok ok ok ok F * *

MvVC
MvVC
MvVC
MvVC

LR

R9, 0 (R1) *—> Fullword with IP address

R10, 4 (R1) *—> 15 character string
INITSTR,=CL15"' ' *Initial string of spaces

DOTSTR, =CL15"' . . . ' *Initial dotted string
0 (L'INITSTR,R10), INITSTR *Initialize to space
WORKSTR, DOTSTR *Initialize workstring

R2, WORKSTR *—> First part goes here

R3,R9 *—> First byte of fullword

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok F * *

252

A Beginner's Guide to MVS TCP/IP Socket Programming

LA R4,1
LR R5,R3
LA R5, 3 (R5) *—> Last byte of fullword
BLDSTR EQU *
SR R1,R1 *Clear workreg
IC R1, 0 (R3) *This byte to work with
CVD R1, DORD *To decimal
oI DORD+7,X'OF"' *Nice zone
MvC WORK, =XL4'40202120' *Edit mask
ED WORK, DORD+6 *The three last digits
MVC 0(3,R2) , WORK+1 *In place it goes.
LA R2, 4 (R2) *Next part goes here
BXLE R3,R4,BLDSTR *Take all four bytes
*
*
*
* Reduce the intermidiate result, so leading zeroes are
* removed:
* 00x.0xx.xxx.0xXxX => X.XX.XXX.XX
*
*
*

SPCLOOK

SPCADV

SPCEND

MVCSTR

LA
1A
LR
AR
BCTR
EQU
CLI
BNE
BCTR
LTR
BZ
LR
BCTR
EX
MVI
BCTR
B
EQU
1A
BCTR
CH
BH
EQU
MvC
TERM
MvC
END

R2, WORKSTR
R3, L' WORKSTR
R6, R2
R6,R3
R6,0

*

0(R2),C' '
SPCADV
R3,0
R3,R3
SPCEND
R4,R3
R4, 0

R4, MVCSTR
0(R6),C' '
R6,0
SPCLOOK

*

R2, 1 (R2)
R3,0

R3, =AL2 (0)
SPCLOOK

*

*—> Start of workstring

*Full length of workstring

*We need to calculate a pointer
*— to the last character

*— in the workstring.

*Is this a space?

*— No, just advance

*New length

*Any length left?

*— No, we are finished
*Current length

*And now ready for execute
*Move up string

*Move in a space as last char
*Ready for next move up

*— Yes, look for more moves

*Advance string pointer
*Reduce length

*Any length left?

*— Yes, look for more moves

0 (L'WORKSTR,R10) , WORKSTR *Move back to caller

RC=0
0(*-*,R2),1(R2)

*Move up string

G.3 TPIIADDR Convert IP Address Character String to Full-word

* ok ok ok F * *

khkkhkhkkhkhkkhkhkkhkhkkhhkkhkhkhkhkhkhkhkhkkkhhkkk

Name:

* ok ok ok ok F * *

Function:

Interface:

TPIIADDR

Convert an IP address from a 15 character dotted

decimal format to a

fullword network byte format.

Rl -> parameter list with two pointers:
+0 -> 15 character area with IP address in dotted

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok ok ok F * *

253

Logic:

Abends:

Returncode:

Written:

L I A R SR R N R R S R R N R SRR R

Modified:
*

A Beginner's Guide to MVS TCP/IP Socket Programming

decimal format.
+4 -> fullword return area for IP address in network
byte format.

This module is called from other TPI modules
to convert an IP address from dotted decimal format to
a fullword network byte format.

Example:
Input:
Output:

— none -

RC = 00:
RC = 08:

RC = 12:
RC = 16:
RC = 20:
RC = 24:
RC = 28:

When the
returned.

of binary zero is returned.

May 28'th 1994 at ITSO Raleigh

CL15'9.24.2.33"
X'09180221"

Conversion OK

A part is longer than 3 characters
(9.1234.2.3)

A part has a zero length (9..2.3)

Non numeric data (9.A.B.2)

A part has a value greater than 255
(9.340.2.1)

The IP address has more than four parts
(9.2.3.2.4)

The IP address has less than four parts
(9.2.3)

return code is 0, a valid IP address is
When the return code > 0, a return field

L I I N S T I R SR R R N N R R

khkkhkhkkkkhkkkhkhkhhhhhkhhkhkhkhhhhhhkhkhkhkhhkhhkhkkkkkkkhhkkkkkkkhhkhkkkkkkkhhkkrkkk
WORKAREA DSECT

DC
DORD DC
STARTOUT DC
WORK DC

NUMTEST DC
*

TPIIADDR INIT

18F'0"
D'O’
A(0)
cLa' '
cLa' '

*Save area
*Work
*Work
*Work
*Work

'Convert IP address from text to fullword',
RENT=YES, WORKLEN=64

USING WORKAREA,R13

L R9, 0 (R1) *—> 15 bytes text string IP addr

L R10, 4 (R1) *—> Fullword return field

ST R10, STARTOUT *Save start of return field

LR R2,R9 *Passed string starts here

LR R8,R9

LA R8, 15 (R8) *First byte after string

LR R3,R2 *Our advance pointer
NEXTCHAR EQU *

CLI 0(R3),C'." *A separator ?

BE SEPFND *— Yes, we found one

CLI 0(R3),C' ' *A separator (The last one) ?

BE SEPFND *— Yes, process element
CONTLOOP EQU *

LA R3,1(R3) *Advance one byte

CR R3,R8 *Still inside string ?

BL NEXTCHAR *— Yes, look on

A Beginner's Guide to MVS TCP/IP Socket Programming

254

SEPFND

*
SETRCO

SETRCS8

SETRC12

SETRC16

SETRC20

SETRC24

SETRC28

GETOUT

EQU
LR
SR
CH
BH
LTR
BNP
MvC

SR

BCTR
EX
XC
MVZ
CLC
BNE
PACK
CVB
CH
BH
STCM

CLI
BE

LR

CR
BNL

CR
BL

EQU

CR
BNE

A Beginner's Guide to MVS TCP/IP Socket Programming

*

R4,R3

R4, R2

R4, =AL2 (3)
SETRCS

R4, R4
SETRC12
WORK, =4C'0'
R7, WORK
R15, 4

R15,R4
R7,R15

R4,0

R4, MVCBYTES
NUMTEST , NUMTEST
NUMTEST, WORK
NUMTEST, =4X'FO'
SETRC16
DORD, WORK
R1, DORD
R1,=AL2 (255)
SETRC20

R1,B'0001',0(R10)

R10, 1 (R10)
0(R3),C' '
SETRCO
R3, 1 (R3)
R2,R3
R3,R8
SETRCO
R14, STARTOUT
R14, 4 (R14)
R10,R14
NEXTCHAR
SETRC24

*

R14, STARTOUT
R14, 4 (R14)
R10,R14
SETRC28
R15,R15
RETURNDT
*

R15, 8
GETOUT

*

R15, 12
GETOUT

*

R15,16
GETOUT

*

R15, 20
GETOUT

*

R15, 24
GETOUT

*

R15, 28
*

R1, STARTOUT

*— No, treat as separator found
*Do not destroy advance pointer
*Where we started = length

*Max 3 is allowed

*If more — RC=8

*But must also be > 0

*If not - RC=12

*Initialize work field

*—> Start of work field

*Length of work field

*Offset into work field

*—> Here to move into workfield
*Length of bytes for Execute
*Move bytes to work field

*Make ready for MVZ

*Let us see zones

*Are we numeric ?

*— No — RC=16

*Pack to decimal

*Into binary form.

*Max value

*If higher - RC=20

*Return byte

*—> Next return byte

*Any more data?

*— No, we are done

*—> Start of next string part
*New start base

*Are we still inside ?

*— No, consider end of string
*—> First return byte

*—> first byte after return field
*We will only return 4 bytes

*— OK, we are not there yet

*— We will not return 5 !!

*—> First return byte

*—> first byte after return field
*Did we return exact 4 bytes?

*— No, set RC=28

*Go and return valid data
*One part > 3 characters

*Zero length part

*Part is not numeric

*Part value > 255

*More than 4 parts

*Less than 4 parts

*—> Return field

A Beginner's Guide to MVS TCP/IP Socket Programming

255

XC
RETURNDT EQU

A Beginner's Guide to MVS TCP/IP Socket Programming

0(4,R1),0(R1)

*

TERM RC=R15

LTORG
MVCBYTES MVC
END

0(*-*,R7),0(R2)

*Return zero value when rc<>0

*Move bytes to workfield

G.4 TPHHOCTL Convert IOCTL Command Name to Command

khkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkhkkkhhkkk

*

* Name: TPIIOCTL

*

* Function: Build COMMAND parameter for IOCTL call

* COBOL has some problems with the command bitstrings.
*

* Interface: Rl -> parameter list with two pointers:

* +0 -> 16 char command string name (In)
* +0 -> ioctl command fullword value (Out)
*

* Logic: Build ioctl command based on command string
*

* Abends: - none -

*

* Returncode: - none -

*

* Written: April 8'th 1995 at ITSO Raleigh

*

* Modified:

*

* ok ok ok ok ok ok ok Ok Ok Ok ok ok Ok Ok Ok F F * *

khkkhkhkkhkkkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhhkk

*

WORKAREA DSECT
DC
*

TPIIOCTL INIT

USING

L

L

LM
LOOP EQU

CLC

BE

BXLE

FOUNDIT EQU
MvVC
SR
GETBACK EQU
TERM
LTORG
CMDBXLE DC
FIRST DC
DC
DC
DC
DC

18F'0’

*Save area

'Build IOCTL command code',

RENT=YES
WORKAREA, R13

R2, 0 (R1)
R3, 4 (R1)

R5, R7, CMDBXLE
*
0(16,R2),0 (R5)
FOUNDIT

R5,R6, LOOP
R15, 8

GETBACK

*
0(4,R3),16 (R5)
R15,R15

*

RC=R15

A (FIRST, 20, LAST)

CL16'FIONBIO
CL16'FIONREAD
CL16'SIOCADDRT
CL16'SIOCATMARK
CL16'SIOCDELRT

*—> 16 char command string
*-> 4 byte return area

*This command ?

*— Yes

*Look them all

*Set RC=8

*And return to caller

*Move back command value
*Set RC=0

*Use value in R15 as RC

',X'8004A77TE"
', X'4004A77F"
', X'8030A70A'
',X'4004A707"
', X'8030A70B'

A Beginner's Guide to MVS TCP/IP Socket Programming

256

A Beginner's Guide to MVS TCP/IP Socket Programming

DC CL16'SIOCGIFADDR

DC CL16'SIOCGIFBRDADDR
LAST DC CL16'SIOCGIFDSTADDR

END

G.5 TPIWAIT Place Calling Process in Wait

', X'CO20A70D"'
', X'C008AT714"
', X'CO20A70F"'

khkkhkhkkhkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkkhhkk

*

* Name: TPIWAIT

*

* Function: Wait a specified amount of time.

*

* Interface: Rl —-> parameter list with one pointer:

* +0 -> fullword with waittime in milliseconds
*

* Logic: Wait the requested amount of time and return.
*

* Abends: - none -

*

* Returncode: - none -

*

* Written: April 8'th 1995 at ITSO Raleigh

*

* Modified:

*

* ok ok ok ok ok ok Ok Ok Ok Ok Ok Ok Ok Ok F * *

khkkhkhkkhkhkkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhhkk

*

WORKAREA DSECT
DC 18F'0’

WAITTIME DC A(0)
*

*Save area
*Wait interval

TPIWAIT INIT 'Wait a specified amount of time’',

RENT=YES, WORKLEN=256

USING WORKAREA,6R13

L R9, 0 (R1)
L R7, 0 (R9)
SR R6,R6

D R6,=A(10)

ST R7,WAITTIME

LA R2, WAITTIME

STIMER WAIT,
BINTVL= (R2)

TERM RC=0
LTORG
END

*—> Fullword with waittime in msec
*Milliseconds

*Prepare for division

*To get in 1/100 seconds

*Store for STIMER

*—> fullword with 1/100 seconds
*Wait

G.6 TPIRACEF Interface to RACROUTE REQUEST=VERIFY User SVC

khkkhkhkkhkhkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkkhkkk

*

* Name: TPIRACF

*

* Function: Interface routine to user SVC 236 for verification of
* user and construction of task level security

* environment.

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok F * *

257

Interface:

Logic:

Abend:

Returncode:

Written:

LR R R R R R N S AU R R N NN N N N SRR R I NN N NN R R N

A Beginner's Guide to MVS TCP/IP Socket Programming

Rl —-> Parameter list with 6 pointers:
+0 —> 4 byte request kode (In)

0:

4: Verify user; do not establish task level
security environment
8: Reset security environment for this task to
address space environment
+4 -> 8 byte userid (In)
+8 —> 8 byte password (In)
+12-> 8 byte new password (In)
+16—> 8 byte RACF group (In)
+20-> 8 byte application (In)

New password, RACF group and application must be
be passed as space if they are not relevant for this

call.

Password and new password must be passed in clear.

1. Validate parameters
2. Build TPIRACFA area
3. Issue SVC236 with Rl pointing to TPIRACFA
4. Convert return codes to something understandable
5. Return to caller
none
0 Everything is OK
4 Userid is not defined to RACF
8 Password is invalid
12 : Password is expired - new password required
16 : New password not a valid password
20 : Userid is not part of the passed group
24 : Userid is revoked
28 : Access to group is revoked
32 : Userid is not authorized to application
252 : Caller not authorized to use SVC 236
253 : There is no task level env. to delete
254 : Error in passed parameters
255 : Request in error - of other reasons.
April 7'th, 1995 - ITSO Raleigh

TPIWORK DSECT

DS
MACWORK DC
PARMPTR DC

104X'00’
XL128'00'
A(0)

TPIRACFA TPIRACFA

WTOWORK DS
DC
DC
RACREQ DC
DC
RACUID DC
DC
RACGRP DC
DC

Verify user and establish task level
security environment

L R S SR N R NN S SRR R N R N I R SRR R N R N N R

hkhkkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhhkkhkkhkhkkhkhkhkhkhkhkhkhkkkkkx

*Save Area

*Macro work area

*Parameter pointer at entry
*Interface area to SVC 236

OoF *WTO Message build area
XL4'00',C'TPIRACF - ' *Placeholder
C'Function="' *Placeholder

CL4' ' *Request kode

C' User=' *Placeholder

CL8' ' *Userid

C' Group=' *Placeholder

CL8' ' *Group

C' Appl=' *Placeholder

A Beginner's Guide to MVS TCP/IP Socket Programming

258

RACAPP

RACSAF

RACRC

RACREAS

RACMYRC

DORD
WORKRC
*

TPIRACF

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

INIT

USING
ST
LR

MvVC
MvVC
MvVC

A Beginner's Guide to MVS TCP/IP Socket Programming

CL8' ' *Application

C' SAF RC=' *Placeholder

CL4' ' *SAF RC

C' RACF RC=' *Placeholder

CL4' ' *RACF RC

C' RACF Reason=' *Placeholder

CL4' ' *RACF Reason

C' TPIRACF RC=' *Placeholder

CL4' ' *Return code from TPIRACF
XL4'00" *Placeholder

D'0' *For work

A(0) *For work

'TPI - RACF interface', RENT=YES, WORKLEN=512, Cc
MODE=31

TPIWORK, R13

R1, PARMPTR

R11l,R1 *Save parms pointer

TPIRACFA (TPIRACFL) , =XL (TPIRACFL) '00'

TPIREYEC,=CL8'TPIRACFA'

*Eyecatacher

WTOWORK (WTOLISTL) , WTOLIST *Init WTO area

Check

all parameters and build TPIRACFA area

* ok ok Ok * * *

REQCRE

REQOK

A Beginner's Guide to MVS TCP/IP Socket Programming

MvVC
CH
BE
MvVC
CH
BE
MvVC
CH
BNE
MvVC
EQU
SR
EQU
ST
CH
BE

MvVC
MvVC

BAL

MvVC

BAL

MvVC

BAL

R2, 0 (R1)
R2, 0 (R2)
RACREQ, =CL4 'CRE'
R2,=AL2(0)

REQOK
RACREQ, =CL4 ' TEST'
R2,=AL2 (4)
REQCRE

RACREQ, =CL4'N/A'
R2,=AL2(8)
BADPARMS
RACREQ, =CL4 'DELE'
REQOK

*

R2,R2

*

R2, TPIRREQ
R2,=AL2(8)
PARMSOK

R2, 4 (R1)
TPIRUID, O (R2)
RACUID, 0 (R2)

R2, TPIRUIDL
R14,CALLEN
R2, 8 (R1)
TPIRPWD, O (R2)
R2, TPIRPWDL
R14,CALLEN

R2,12 (R1)
TPIRNPW, O (R2)
R2, TPIRNPWL
R14,CALLEN

*—> request code
*Request code
*Create

*Code = 0 is OK

*Just test
*Code = 4 is OK

*Unknown code
*Code = 8 is OK

*Delete task level env.

*TEST starts with a create

*Request code for interface
*ENVIR=DELETE?

*No further parms needed
*—> 8 bytes userid

*Userid

*Trace line

*Get 1l'userid

*-> 8 bytes password
*Password

*Get 1'password

*—> 8 bytes new password

*New password

*Get 1l'new password

259

A Beginner's Guide to MVS TCP/IP Socket Programming

L R2,16 (R1) *—-> 8 bytes group
MVC TPIRGRP, 0 (R2) *Group
MVC RACGRP, 0 (R2) *Trace line
LA R2, TPIRGRPL
BAL R14,CALLEN *Get 1l'group
L R2,20(R1) *—> 8 bytes application name
MVC TPIRAPP, 0 (R2) *Application name
MVC RACAPP, 0 (R2) *Trace line
LA R2, TPIRAPPL
BAL R14,CALLEN *Get l'application
*
CLC TPIRREQ,=A(4) *0 and 4 require certain parms
BH PARMSOK *8 requires no special parms
CLI TPIRUIDL, O *We must have a user ID
BE BADPARMS
CLI TPIRPWDL, 0 *And a password
BE BADPARMS
PARMSOK EQU *
*
*
*
* Issue SVC call with Rl pointing to TPIRACFA
* Create trace line after return from user SVC 236
*
*
*
LA R1l, TPIRACFA *—> TPIRACFA interface area
svC 236 *User SVC 236

*

RCTEST EQU
CH
BH
LR

TPIHEX TPIRSAF+2, RACSAF
TPIHEX TPIRRC+2, RACRC
TPIHEX TPIRREAS+2,RACREAS

*

R15, =AL2 (250)
SETRCOWN
R2,R15

*Is it our own RC?

*— Yes, pass it back
*Save it for later use
*SAF returncode

*RACF returncode

*RACF reasoncode

LR R15,R2 *SVC236 R15
*
*
*
* Analyze returncodes from SAF and RACF; and set returncode from this
* routine
*
*
*
CLC TPIRSAF,=A(0) *RC=0 from SAF is OK
BE SETRCO *OK
CLC TPIRSAF,=A(4) *SAF RC=4 *?
BNE TSAF08 *— no, test for SAF RC=8
CLC TPIRRC,=A(4) *RACF RC=4 ?
BE SETRC4 *User is unknown
B SETRC255 *Garbage can
TSAF08 EQU *
CLC TPIRSAF,=A(8) *SAF RC=8 ?
BNE SETRC255 *— No, Garbage can
CLC TPIRRC,=A(8) *RACF RC=8
BE SETRCS8 *— Yes, Password invalid
CLC TPIRRC,=A(12) *RACF RC=12 X'0C'
BE SETRC12 *— Yes, Password expired
CLC TPIRRC,=A(16) *RACF RC=16 X'10'
BE SETRC16 *— Yes, New password invalid
CLC TPIRRC,=A(20) *RACF RC=20 X'14'

A Beginner's Guide to MVS TCP/IP Socket Programming

260

BE
CLC
BE
CLC
BE
CLC
BE

A Beginner's Guide to MVS TCP/IP Socket Programming

SETRC20
TPIRRC, =A (28)
SETRC24
TPIRRC, =A (36)
SETRC28
TPIRRC, =A (52)
SETRC32
SETRC255

*— Yes, User not in group

*RACF RC=28 X'lC'

*— Yes, User is revoked

*RACF RC=36 X'24'

*— Yes, access to group rev.
*RACF RC=52 X'34'

*— Yes, Access to appl. not all.
*Rest for garbage can

Subroutine for calculation of length byte in interface
to RACROUTE

* % ok ok ok F * *

CALLEN EQU

CALLOOP EQU
CLI
BE
CLI
BE

BCT
CALEND EQU

SR
STC
BR

*

R3, 1 (R2)
R4, 8

*

0(R3),0
CALEND
0(R3),X'40"
CALEND
R3, 1 (R3)
R4, CALLOOP
*

R3, 8

R3,R4
R3, 0 (R2)
R14

*-Start field
*Max length

*X'00' terminates
*X'40' terminates also
*Advance pointer

*max length

*no. loops=length

*Length field in here
*back to mainline

Returncode settings

* % ok F * * *

SETRCO EQU

CLC
BNE
CLC
BNE
MVC
MVI
MVI
MVI
MVI
MVI

svC

LTR

SETRC4 EQU

SETRCS8 EQU

SETRC12 EQU

*

R6,0
RACREQ, =CL4 ' TEST'
RETUR
TPIRREQ, =AL4 (TPIRALL)
RETUR
TPIRREQ, =AL4 (TPIRDEL)
TPIRUIDL, O
TPIRPWDL, O
TPIRNPWL, O
TPIRGRPL, 0
TPIRAPPL, 0

R1, TPIRACFA

236

R15,R15

RETUR

RCTEST

*

R6, 4

RETUR

*

R6, 8

RETUR

*

*OK
*If call was for test

*and we did a CREATE

*Then we must delete it again
*No user ID

*No password

*No new password

*No group id

*No appl id

*—> TPIRACFA interface area
*User SVC 236

*Should only be OK?

*— Yes, it is

*Redrive return code testing

*User unknown

*password invalid

A Beginner's Guide to MVS TCP/IP Socket Programming

261

A Beginner's Guide to MVS TCP/IP Socket Programming

R6,12
RETUR
*
R6,16
RETUR
*

R6, 20
RETUR
*

R6, 24
RETUR
*

R6, 28
RETUR
*

R6, 32
RETUR
*
R6,R15
RETUR
*

R6, 255
RETUR
*

R6, 254
RETUR
*

R6, WORKRC

TPIHEX WORKRC+2, RACMYRC

LA
B
SETRC16 EQU
LA
B
SETRC20 EQU
LA
B
SETRC24 EQU
LA
B
SETRC28 EQU
LA
B
SETRC32 EQU
LA
B
SETRCOWN EQU
LR
B
SETRC255 EQU
LA
B
BADPARMS EQU
LA
B
RETUR EQU
ST
WTO
TERM
LTORG
WTOLIST WTO
WTOLISTL EQU
END
MACRO
&NAME TPIRACFA
AIF
&NAME DS OF
AGO
.DSECT ANOP
&NAME DSECT
.GENCODE ANOP
TPIREYEC DC
TPIRSAF DC
TPIRRC DC
TPIRREAS DC
TPIRREQ DC
TPIRALL EQU
TPIRDEL EQU
TPIRUIDL DC
TPIRUID DC
TPIRPWDL DC
TPIRPWD DC
TPIRNPWL DC
TPIRNPW DC
TPIRGRPL DC
TPIRGRP DC
TPIRAPPL DC

MF= (E, WTOWORK)
RC=R6

'TPIRACF - Function=n/a
pl=n/a SAF RC=n/a
IRACF RC=n/a ',6MF=L
*~WTOLIST

&TYPE=CSECT

*password expired

*new password invalid

*user not in group

*user revoked

*access to group revoked

*not auth. to appl.

*Pass unchanged back to caller

*garbage can returkode

*Error in passed params

*Just for formatting

*RC from TPIRACF

*Put out a WTO

*Return with RC as set in R6

User=n/a Group=n/a
RACF RC=n/a RACF Reason=n/a

('&TYPE' EQ 'DSECT') .DSECT
*TPIRACFA section

.GENCODE

*TPIRACFA section

CL8'TPIRACFA'
AL4 (0)
AL4 (0)
AL4 (0)
F'O'
0

8
AL1(0)
cL8' '
AL1(0)
cL8' '
AL1(0)
cL8' '
AL1(0)
cL8' '
AL1(0)

*Eye catcher

*SAF RC

*RACF RC

*RACF Reason code
*Request code
*Verify and build sec. env
*Delete sec env.
*L'userid

*Userid
*L'password
*password

*L'new password
*new password
*L'groupid
*groupid
*L'application

A Beginner's Guide to MVS TCP/IP Socket Programming

ApC
TPC

262

TPIRAPP DC
TPIRACFL EQU

MEND

CL8'

A Beginner's Guide to MVS TCP/IP Socket Programming

! *application

*—&NAME

G.7 User SVC for RACROUTE REQUEST=VERIFY

khkkhkhkkhkkkhkhkhkkhhkkhkhkhkhkhkhkhkhkkhkhhkk

Function:

Interface:

Logic:

Abends:

Returncode:

Written:

IGC00236 — SVC 236 - IGCO0023F

User

for verification of userid/pw and creation of a

task

Address space user ID of calling task must be
authorized to use this SVC by having read access to
FACILITY resource TPI.RACINIT

Rl -> Interface area, mapped with macro TPIRACFA.

R3 -> CVT

R4 -> TCB for calling task
R5 -> SVRB

R6 -> Entry Point address
R7 -> ASCB

R14 -> Return address

Register contents has been saved before entry to

this

R2-R14 will be restored by MVS before control is
passed back to program that issued the SVC 236.

1. Verify that Rl points to a valid TPIRACFA control
block and that caller has access to it.

2. Copy TPIRACFA control to our getmained storage

3. Issue RACROUTE REQUEST=AUTH to see if calling
address space user ID has read access to
FACILITY resource TPI.RACINIT

4. Initialize SAFP parameter list with the passed
values for userid, password etc.
TPIRACF has verified that the needed parameters
for the request is included in TPIRACFA.

5. Issue RACROUTE REQUEST=VERIFY

6. Set key to callers key and store RACROUTE return
codes back into callers TPIRACFA

7. Return to caller

none

0-250: Return code from SAF
252: Calling address space user is not authorized to

253: No task level security environment to delete.
254: R1 does not point to a valid TPIRACFA control

ITSO

SVC 236 type 4 - Do RACROUTE REQUEST=VERIFY

level security environment.

Area has been constructed by interface module
TPIRACF, which issues the SVC 236.

SVC routine.

(hopefully!)

use this user SVC.

block on entry to SVC routine.

Raleigh April 10, 1995.

L R I R SR R T R N S SRR R I N N S SRR N R R SRR R N I I

hkhkkkhkkkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkkkkx

PRINT NOGEN

A Beginner's Guide to MVS TCP/IP Socket Programming

263

A Beginner's Guide to MVS TCP/IP Socket Programming

ICHSAFP *SAF Parameter list
CVT DSECT=YES *CVT

IHAPSA *PSA

IHARB *RB

IKJTCB *TCB

IHAASCB *ASCB

TIHAASXB *ASXB

*

TPIRACFA TPIRACFA TYPE=DSECT
*

TPIWORK DSECT

MACWORK DC 256X'00"' *Macro work area

GETMADR DC A(0) *Getmained storage address
GETMLEN DC A (0) *Getmained storage length
PARMPTR DC A (0) *—> passed user parmlist
PARMCOPY DC (TPIRACFL)X'00' *Copy of user parmlist
SAFWORK DC 512X'00" *SAF router workarea
WORKLEN EQU *—-TPIWORK *Length to getmain

*

IGC00236 TITLE 'ITSO User type 4 SVC number 236 — RACROUTE VERIFY'
IGC00236 CSECT

IGC00236 AMODE 31

IGC00236 RMODE ANY

*

* GENERAL PURPOSE REGISTER EQUATES
*

RO EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

*
LR R12,R6 *Entry point address
USING IGC00236,R12 *Addressability
LR R8,R14 *Save return address ptr.
USING CVT,R3 *Comm. Vector Table
USING TCB,R4 *Task Control Block
USING RBBASIC,R5 *Request Block common part
USING ASCB,R7 *Address Space Control Block
LR R9,R1 *—> TPIRACFA interface area
LA RO, WORKLEN *L'Workarea
GETMAIN R, LV=(0) *Getmain workarea storage
LR R11,R1 *Here it is
USING TPIWORK,R11l *Workarea adressability
ST R11l, GETMADR *For later freemain
ST RO, GETMLEN *—do-

*
*

*

* To be sure that caller does not pass a pointer to storage that he/she
* has no access to, we use modeset to set key to user key before we

A Beginner's Guide to MVS TCP/IP Socket Programming

264

A Beginner's Guide to MVS TCP/IP Socket Programming

* reference all bytes in the passed area.
* We then switch back to our own key and copy the parameter area into
* our own getmained storage, so the caller is not able to modify them
* on the fly.
*
* If interface area does not have a valid eyecatcher, we return
* to the caller with RC=254
*
*
*
PRINT GEN
ST R9, PARMPTR *Save pointer to user parmlist
MODESET EXTKEY=RBT234, *Ensure proper fetch protect
WORKREG=2
MvVC 0 (TPIRACFL,R9), 0(R9) *Copy to itself for byte ref.
MODESET EXTKEY=ZERO, *Back to SVC key
WORKREG=2
PRINT NOGEN
MvVC PARMCOPY (TPIRACFL),0(R9) *Copy interface area to us
LA R9, PARMCOPY *—> Copy of interface area
USING TPIRACFA,R9 *Hereafter we access our copy
CLC TPIREYEC,=CL8'TPIRACFA' *Valid Eyecatcher?
BNE RETUR254 *— No, return with RC=254
*
*
*
* To control who is using this SVC, we ask RACF if address space
* user ID has READ access to FACILITY class resource TPI.RACINIT
*
* If AS user is not authorized or no AS ACEE exists, we return
* to caller with RC=252
*
*
*

INTFOK EQU *

L R2, ASCBASXB

USING ASXB,R2

ICM R2,15,ASXBSENV

BZ RETUR252

MVC MACWORK (AUTHPL) , AUTHP

LA R10, MACWORK

USING SAFP,R10

RACROUTE REQUEST=AUTH,
ATTR=READ,
ENTITYX=TPIRES,
ACEE= (R2),
LOGSTR=LOGSTR,
WORKA=SAFWORK,
RELEASE=1.9,
MF= (E, MACWORK)

LTR R15,R15

BNZ RETUR252

*—> ASCB Extension

*ASXB

*—> Address Space ACEE

*No AS ACEE exists, RC=252
*RACROUTE AUTH Parm list

*—> SAFP

*Adressability RACROUTE parms
*Authorization request

*We want READ access to
*TPI.RACINIT

*Check against AS user

*For logging purposes

*512 bytes work area
*Required for ENTITYX keyword
*Use prebuilt parmlist

*We will only accept SAF RC=0
*Else return with RC=252

Build parameter list for RACROUTE REQUEST=VERIFY call based
on the passed values in the interface area from the caller.

* ok ok ok ok * * *

CLC TPIRREQ, =A (TPIRDEL)
BNE NOTDEL

*Delete request?
*— No

A Beginner's Guide to MVS TCP/IP Socket Programming

c

oo oo e Ne!

265

NOTDEL

NOUID

NOPWD

NONPW

NOGRP

NOAPP

NOTCREAT

A Beginner's Guide to MVS TCP/IP Socket Programming

ICM R14,15, TCBSENV

BZ RETUR253

EQU *

MVC MACWORK (VERPL) , VERP

CLI TPIRUIDL,O

BE NOUID

RACROUTE REQUEST=VERIFY,
USERID=TPIRUIDL,
MF= (M, MACWORK)

EQU *

CLI TPIRPWDL,O

BE NOPWD

RACROUTE REQUEST=VERIFY,
PASSWRD=TPIRPWDL,
MF= (M, MACWORK)

EQU *

CLI TPIRNPWL,O

BE NONPW

RACROUTE REQUEST=VERIFY,
NEWPASS=TPIRNPWL,
MF= (M, MACWORK)

EQU *

CLI TPIRGRPL,O0

BE NOGRP

RACROUTE REQUEST=VERIFY,
GROUP=TPIRGRPL,
MF= (M, MACWORK)

EQU *

CLI TPIRAPPL,O0

BE NOAPP

RACROUTE REQUEST=VERIFY,
APPL=TPIRAPPL,
MF= (M, MACWORK)

EQU *

CLC TPIRREQ,=A(TPIRALL)

BNE NOTCREAT

RACROUTE REQUEST=VERIFY,
ENVIR=CREATE,
MF= (M, MACWORK)

B DORAC

EQU *

RACROUTE REQUEST=VERIFY,
ENVIR=DELETE,
MF= (M, MACWORK)

*Do we have a TCB ACEE ?
*— No, return with RC=253

*VERIFY parameter list
*Do we have user ID?

*— No, no user ID passed
*

*Put in user ID
*

*Do we have a password ?
*— No, no password passed
*

*Put in password
*

*Do we have new password?
*— No, no new password passed
*

*Put in new password
*

*Do we have a group ID

*— No, no group id passed
*

*Put in group id

*

*Do we have an appl name?
*— No, no appl name passed
*

*Put in application name
*

*ENVIR=CREATE?
*— No.
*

*Put in CREATE
*

*

*Put in DELETE
*

Issue the RACROUTE REQUEST=VERIFY call.
Use modeset to set key to callers key, before we store return
code values back into the caller's interface area.

* ok ok ok ok ok * * *

DORAC

EQU *

RACROUTE REQUEST=VERIFY,
LOGSTR=LOGSTR,
WORKA=SAFWORK,
RELEASE=1.9,

MF= (E, MACWORK)

LR R7,R15

L R9, PARMPTR

MODESET EXTKEY=RBT234,

*Do VERIFY request

*Identify us as caller

*Work area

*SAF release

*

*Save SAF RC

*Restore pointer to user parms
*Ensure proper store protect

A Beginner's Guide to MVS TCP/IP Socket Programming

oo eNe!

266

A Beginner's Guide to MVS TCP/IP Socket Programming

WORKREG=2 *
STCM R7,B'1111', TPIRSAF *SAF RC
MVC TPIRRC, SAFPRRET *RACF RC
MVC TPIRREAS, SAFPRREA *RACF Reason kode
MODESET EXTKEY=ZERO, *Reset to SVC key Cc
WORKREG=2 *
B FREESTOR *Go to freemain
RETUR252 EQU * *Not authorized to use SVC
LA R7,252 *RC=252
B FREESTOR *Go to freemain
RETUR253 EQU * *No task level env. to delete
LA R7,253 *RC=253
B FREESTOR *Go to freemain
RETUR254 EQU * *Invalid eyecatcher
LA R7,254 *RC=254
FREESTOR EQU *
L R1, GETMADR *This to freemain
L RO, GETMLEN *Length to freemain
FREEMAIN R,A=(R1l),LV=(RO) *Freemain storage
LR R15,R7 *Return code to R15
LR R14,R8 *Restore return address ptr.
BR R14 *Get back.
LTORG
VERP RACROUTE REQUEST=VERIFY, MF=L
VERPL EQU *-VERP
AUTHP RACROUTE REQUEST=AUTH, CLASS='FACILITY',6 MF=L

AUTHPL EQU *—AUTHP
LOGSTR DC ALl (L'LOGTXT)

LOGTXT DC C'TPI Routines - RACROUTE VERIFY'
DS OF

TPIRES DC AL2(20,0),CL20'TPI.RACINIT'
END

G.8 TPIAUTH Issue RACROUTE REQUEST=AUTH for FACILITY Class

khkkhkhkkhkhkkhkhkhkkhkhkkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkkk

Name: TPIAUTH
Function: Issue a RACROUTE REQUEST=AUTH for a FACILITY class
resource

Interface: Rl -> parameter list
+0 Pointer to 80 char resource name (In)
+4 Pointer to 8 char access intent (In)

Logic: Issue a RACROUTE REQUEST=AUTH for the resource name
passed. Authorization will be done via std. ACEE
search order: Use TCBSENV if it is non-zero. If
TCBSENV is zero, use address space security environment.

Returncode: 0: Access is allowed
4: Access is not allowed

Written: March 27'th 1994 at ITSO Raleigh

Modified:

ok ok ok ok ok ok ok ok Ok Ok Ok Ok ok Ok Ok Ok ok Ok F * *

hhkkkhkkkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkhkx

ook ok ok ok ok ok Ok ok Ok Ok ok Ok Ok Ok Ok 2k ok ok Ok Ok F F *

PARMS DSECT

A Beginner's Guide to MVS TCP/IP Socket Programming 267

PNAME DC

PACCESS DC

*

TPIWORK DSECT
DC

RACLWORK RACROUTE REQUEST=AUTH,

WTOWORK WTO

WTOSAFRC EQU
WTORACRC EQU
WTORACRS EQU
DORD DC
RACFWORK DC
ENTITYBF DC
ENTITYNM DC
*

TPIAUTH INIT

USING
LR
USING

INTLOOP EQU
CLC
BE
BXLE
LA

GOTINT EQU
SR
IC
L
MvVC
MvVC

MvVC

RACROUTE REQUEST=AUTH,

LR
MvVC
LR
SR
SLDL
STM
UNPK
NC
TR

L

SR
SLDL

A Beginner's Guide to MVS TCP/IP Socket Programming

A(0)
A(0)

18F'0"

ENTITY=(0),

CLASS='FACILITY',

ATTR=READ,
WORKA=0,
RELEASE=2.1,
MF=L

*—> 80 char resource name
*—> 8 char access intent

*Save area
*RACROUTE Macro expansion

'TPIAUTH SAF RC=xxxx RACF RC=xxxx RACF Reason=xxxx',

MF=L
WTOWORK+19, 4
WTOWORK+32, 4
WTOWORK+49, 4
D'0'
512X'00"

AL2 (80, 0)
CL80' '

'Issue RACROUTE REQUEST=AUTH for a FACILITY resource',

*SAF RC in WTO line
*RACF RC in WTO line
*RACF Reason in WTO line
*Unpack and edit work
*SAF work area

*ENTITYX buffer
*Resource name

MODE=31, RENT=YES, WORKLEN=1024

TPIWORK, R13
R2,R1
PARMS, R2

R3, PACCESS
R7,R9, BXLEINT
*
0(8,R3),0(R7)
GOTINT

R7,R8, INTLOOP
R7, INTST

*

R3,R3
R3, 8 (R7)

R4, PNAME

*Adressability work areas
*Save parm pointer
*Adressability parameters
*—> 8 char access intent
*Access intent table

*This access intent ?
*— Yes.

*Look through them all
*Use READ as default

*Access intent code
*—> resource name

ENTITYBF (4) ,=AL2(80,0) *Initialize buffer header

ENTITYNM, O (R4)

*Move name to 80 byte buffer

RACLWORK (RACLISTL) , RACLIST
*Authorize request

ENTITYX=ENTITYBF, *Resource name

ATTR=(R3), *Access intent
WORKA=RACFWORK, *SAF Work area
RELEASE=2.1, *

MF= (E, RACLWORK) *

R11,R15 *Save return code from SAF
WTOWORK (WTOLEN) , WTOLIST

R7,R11 *Prepare for double shift
R6,R6 *Make ready for double shift
R6,4 *0000000x xxxxxxx0
R6,R7,DORD *Store for Unpack
WTOSAFRC, DORD *Unpack

WTOSAFRC, =4X'OF'
WTOSAFRC, TRHEX

*Remove F's
*Translate to EBCDIC

R7,RACLIST *RACF RC
R6,R6 *Make ready for double shift
R6,4 *0000000x xxxxxxx0

A Beginner's Guide to MVS TCP/IP Socket Programming

oo e e o Ne]

Q

c

(ool e oS!

268

*
RACLIST

RACLISTL
*

WTOLIST

WTOLEN
*

TRHEX
*

BXLEINT
INTST

INTLAST

STM
UNPK
NC
TR

SR
SLDL
STM
UNPK
NC

TR
WTO
TERM
LTORG

A Beginner's Guide to MVS TCP/IP Socket Programming

R6,R7,DORD
WTORACRC, DORD
WTORACRC, =4X'OF '
WTORACRC, TRHEX
R7,RACLIST+4
R6,R6

R6, 4

R6,R7,DORD
WTORACRS, DORD
WTORACRS, =4X'OF '
WTORACRS, TRHEX
MF= (E, WTOWORK)
RC=R11

RACROUTE REQUEST=AUTH,

EQU

WTO

EQU

DC

DC
DC
DC
DC
DC
END

ENTITY=(0),
CLASS='FACILITY',
ATTR=READ,
WORKA=0,
RELEASE=2.1,
MF=L

*_RACLIST

'TPIAUTH SAF RC=xxxx RACF RC=xxxx RACF

MF=L
*—WTOLIST

C'0123456789ABCDEF'

A(INTST, 9, INTLAST)

CL8'READ',XL1'02"

CL8'UPDATE', XL1'04'
CL8'CONTROL',XL1'08"
CL8'ALTER',XL1'80"'

*Store for Unpack
*Unpack
*Remove F's

*Translate to EBCDIC

*RACF reason code

*Make ready for double shift
*0000000x xxxxxxx0

*Store for Unpack
*Unpack
*Remove F's

*Translate to EBCDIC
*Write out result to syslog
*And out we go with SAF RC

H.0 Appendix H. Sample MVS Concurrent Server

This appendix contains a description of a sample socket application that

was developed during the creation of this book.

The application is called TCP/IP Programming Interfaces

of the following components:

A concurrent server implemented in an MVS address space and based on

the Sockets Extended assembler macro interface

A REXX client

A CICS client

An IMS client

A REXX client

using REXX sockets
written in COBOL using Sockets Extended call interface
written in COBOL using Sockets Extended call interface

using REXX socket used to load the database

Reason=xxxx'

oo e e o Ne]

and consists

Input
file

TPILOAD_
| REXX |
>|Client |

A Beginner's Guide to MVS TCP/IP Socket Programming

269

A Beginner's Guide to MVS TCP/IP Socket Programming

terminal<__>|Client |

TPTREXXC_			
ISPF	REXX		
panels <__>	Client <]		
	[
[
[-			
>			
TPICICSC_	>	TPI server	CAF _
CICS	CICS	< >	Address
terminal<__ >	Client	>	Space
TPTIMSC__ !			
IMS	IMS	< [
F

igure 62. TPI Application Components

The purpose of the application was to illustrate as many of the new IBM
TCP/IP Version 3 Release 1 for MVS programming interfaces as possible.

The server maintains a DB2 table called tpidata with administrative
information related to TCP/IP hosts in the ITSO-Raleigh environment. The
REXX client uses ISPF panels as user interface, and connects to the server
address space for add, query, update or delete requests of DB2 data.

The IMS and CICS clients are query only clients.

s
—

EE]
o N

TPI Concurrent MVS Server

TPI REXX Client Application

TPI DB2 Table Definition

Sample Log from TPI Server Execution

s
N

H.I TPI Concurrent MVS Server

The concurrent TPI server is implemented in an MVS address space (started
task or batch job). It is based on the Sockets Extended assembler macro
programming interface.

|
TPIMAIN Server Main Task |
T|ILOGWT Logwriter task
(.
| |pen logwriter DCB
| |rint out banner line
| Jo until messageno = 999
| | Wait on wait-for-work ECB
|
|
|
|

Attach logwriter DST
INITAPT

Attach server subtasks
Prepare for /MODIFY

SOCKET
BIND | Build logwriter line
LISTEN | Print logwriter line

| Post requester back with «
|nd-do

Do until closedown
Prepare select masks

A Beginner's Guide to MVS TCP/IP Socket Programming 270

A Beginner's Guide to MVS TCP/IP Socket Programming

SELECT (asynchronous)
Wait on ECB-1list
If select was posted
SYNC
Do until no more SDs
If read selected on listener SD

|lose logwriter DCB

|xit

Control Block - common|
lasks within the server |
|pace.

ACCEPT TPIMCB_
If free server task available |[Main Tas
GIVESOCKET to server subtask | for all
Post server subtask |address
else |
Prepare error message
If exception selected
CLOSE
If write selected TPISCB2_
SEND pending error message TPISCB1_
end-do | Server |
If modify ECB was posted | Task |
Signal closedown |Control
If server subtask terminated |Block |
|

if reinstate count < limit
reinstate server subtask
else
Signal closedown
If logwriter task terminated
Signal closedown
end-do
Post server subtasks with RC=4 to stop
Request logwriter DST to stop
exit

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F

igure 63. TPI Server Address Space Logic

TPIMAIN Concurrent Server Main Process
TPILOGWT Logwriter Data Services Task
TPISERV Concurrent Server Subtask
TPISERVD Concurrent Server DB2 Access
TPISEND Send Data Over a Stream Socket
TPIRECV Receive Data Over a Stream Socket
TPIMCB Macro Main Task Control Block
TPISCB Macro Subtask Control Block
TPILOG Macro Issue Logwriter Request
.1.10 TPITRC Macro Issue Trace Request
.11 TPIMASK Macro Set and Test Bits in Select Mask
.1.12 TPIREC Macro DB2 Row Layout
.1.13 TPIMSO Macro Socket Descriptor Table

[ooly ENIN (oW (G211 TSN (OVNN (NN ()

aniy janiy janiy anly aviy a vl fasgy aoiy nly el anly acly o
RN S T (U S SN R S R S R Y
o

H.1.1 TPIMAIN Concurrent Server Main Process

khkkhkhkkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhhkkk

Name: TPIMAIN

Function: TCP/IP Programming Interfaces sample ITSO application
main module.

* % ok F * * *
* ok ok F * * *

Interface: - none -

A Beginner's Guide to MVS TCP/IP Socket Programming

TPISERV Server subtas}
TPISERV Server subtaskl_

INITAPI

Do until posted with R
Wait on wait-for-wo:
TAKESOCKET from TPII
DB2 CAF Open
RECV client request
Process client reque
SEND reply to client
CLOSE socket
DB2 CAF Close

End-do

Exit

271

A Beginner's Guide to MVS TCP/IP Socket Programming

PRINT NOGEN

A Beginner's Guide to MVS TCP/IP Socket Programming

LR R R SN R R I R R R N N SR R SRR R N N R R I N R R R N

*

* Logic: This module is the main task module in the TPI

* Server application.

* It is started either as a normal batch job or as a

* started task.

* The main logic is as follows:

* 1. 1Initialize Main task Control Block (TPIMCB)

* 2. Establish EZA Global Work Area addressability

* 3. Getmain storage for Server task Control Blocks

* (TPISCB)

* 4. Attach Log Writer Task

* 5. 1Initialize socket environment wvia the INITAPI

* function and fetch our own TCP/IP Client id

* 6. Getmain storage for Main task SOcket descriptor

* table (TPIMSO) and initialize entries.

* 7. Attach server subtasks and initialize TIPSCBs

* 8. Set up, so operator can issue a /P command to

* stop server address space

* 9. Get a socket to be used for listen

* 10. Bind the socket to the TPI Server application

* port number

* 11. Issue a Listen on the socket

* 12. Here starts Main task loop:

* Build bit masks for select command and issue an

* asynchronous select (with an ECB keyword)

* 13. Wait on an ECBlist including:

* - select ECB

* - operator modify ECB

* - log writer subtask termination ECB

* - server subtask termination ECBs

* 14. When wait comes through, analyze event:

* Select: a. Issue a socket SYNC call to synchronize
* with socket interface.

* Analyze all returned bits in the select
* bitmasks.

* b. If read selected: Issue an accept,

* a givesocket, and post a free server

* subtask.

* c. If exception selected: Issue a close

* socket (Server subtask has taken socket
* with a takesocket call).

* d. If write selected: Write out any pending
* error message and close socket.

* Modify: Request all subtasks to terminate and

* close down.

* Subtask termination: If it is log writer task,

* treat it as a shutdown request. If it is
* a server subtask, reinstate the subtask

* (keeping track of number of reinstates in
* order to avoid abend loops) .

* 15. Continue with item no. 12 above.

*

* Abends: U1l000: Could not find posted ECB after Wait on ECBLIST
*

* Returncode: - none -

*

* Written: May 28'th 1994 at ITSO Raleigh

*

* Modified:

*
khkkhkhkkhkkkhkkhkhkkhkhkkhkhkkhhkkhkhkhkhkkhkhkkhkhkhkkhhkkhkhkhkhkkhkhkkhkhkkhhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkkk

272

COMMAREA DSECT

A Beginner's Guide to MVS TCP/IP Socket Programming

*For EXTRACT macro

IEZCOM

CIBAREA DSECT *For QEDIT
IEZCIB
IHAASCB *ASCB layout
PRINT GEN

TPISCB TPISCB
TPIMSO TPIMSO
TPIMAIN INIT

*

* * * *

*Server task Control Block dsect
*Main task socket descriptor table
'TPI Main Task', RENT=NO,MODE=24,BASE=(12,11,10)

Initialize de

fault runtime parameters

MVC TPIMDB2,=CL4'DSNI' *DB2 subsystem name
MVC TPIMTCPI,=CL8'T18ATCP' *TCPIP AS name
MVC TPIMPORT, =AL2 (9999) *Port number
MvVC TPIMNOST, =AL2 (2) *Start 2 server tasks
MvVC TPIMMAXS, =AL2 (50) *Max 50 sockets
MVC TPIMMAXD, =AL4 (50) *Max 50 socket descriptors
L R3,X'10" *—> CVT
L R3, 0 (R3) *—> TCB Words
L R15,12 (R3) *—> Current ASCB (My ASCB)
L R3, 4 (R3) *—> Current TCB (My TCB)
SR R2,R2 *Make ready for double shift
SILDL R2,4 *0000000x xxxxxxx0
STM R2,R3, DORD *Store for Unpack
UNPK TPIMTCBE, DORD *Unpack
NC TPIMTCBE, =8X'OF' *Remove F's
TR TPIMTCBE, TRHEX *Translate to EBCDIC
USING ASCB,R15
ICM R14,15,ASCBJBNI *—> Jobname if initiated
BNZ INITJBN *If not zero, pointer is OK
ICcM R14,15,ASCBJBNS *—> Jobname if start/logon
BNZ INITJBN *If not zero, pointer is OK
MVC IDENTJOB, =CL8"' ' *We did not find a jobname
B INITJOBS *Job name is initialized
INITJBN EQU *
MVC IDENTJOB, 0 (R14) *Move in job name
DROP R15
INITJOBS EQU *

LA R15, MAINGLOB *—> EZA Global work area
ST R15, TPIMGLOB *Subtasks will need it
TPITRC TYPE=INIT, *Enable trace points

TRACE=YES, *

MOD=TPIMAIN *Tracing module is TPIMAIN

* F * * *

Getmain stora

ge for server task control blocks (TPISCB)

LH
MH
STORAG

ST
MvVC
LH
BCTR

R2, TPIMNOST *Number of server tasks
R2,=AL2 (TPISCBLN) *Multiply by TPISCB length
E OBTAIN, *Getmain for pool of
LENGTH= (R2) , *— Server task Control
LOC=BELOW *— Blocks

R1, TPIMSCBB *—> First TPISCB
TPIMSCBB+4 (4) ,=A (TPISCBLN) *L'TPISCB Entry
R2, TPIMNOST *Number of TPISCB entries
R2,0 *The last number

R2,=AL2 (TPISCBLN) *Times length per entry
R2,R1 *—> Last TPISCB entry

A Beginner's Guide to MVS TCP/IP Socket Programming

* F * * *

* F * * *

273

A Beginner's Guide to MVS TCP/IP Socket Programming

ST R2, TPIMSCBB+8 *Ready for BXLE
* *
* *
* Start up our Log writer task. *
* It will wait for work on ECB: TPIMLECB *
* *
* *

XC TPIMLDON, TPIMLDON *Clear for wait

ATTACH EP=TPILOGWT, *Module name: TPILOGWT C
PARAM= (TPIMCB), *Pass Main task Control Block (o}
ECB=ECBTLOGW *Termination ECB

ST R1, TPIMLTCB *—> Log writer TCB

WAIT ECB=TPIMLDON *LOGWT will post, when init done.

XC TPIMLDON, TPIMLDON *Clean up

* *
* *
* Initialize socket API *
* *
* Get our client id and log it to the log file *
* *
* *

MVC IDENTTCP, TPIMTCPI *TCP/IP Address space name

MvVC TRCMLFUN, =CL8 ' INITAPI'

EZASMI TYPE=INITAPI, *Tnitialize socket interface (o}
MAXSOC=TPIMMAXS, *So many concurrent sockets C
SUBTASK=TPIMTCBE, *My TCB address in EBCDIC C
IDENT=IDENTSTR, *TCP/IP AS name and my AS name Cc
MAXSNO=TPIMMAXD, *Max. no of socket descriptors C
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR

ICM R15,15,RETCODE *Initapi OK

BM EZAERROR *— No.

MvVC TRCMLFUN, =CL8 'GETCLNID'

EZASMI TYPE=GETCLIENTID, *Get our own client id C
CLIENT=TPIMCLNI, *Store it in Main task Control bl. C
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR

ICM R15,15,RETCODE *Was it OK

BM EZAERROR *— No, stop now.

L R15, TPIMCDOM *Addressing Family

CvD R15, DORD *From binary to decimal

oI DORD+7, X' OF' *A nice sign.

UNPK CLNLOGAF,DORD *Into logging line

MVC CLNLOGAS, TPIMCNAM *Address Space Name

MVC CLNLOGST, TPIMCTSK *Subtask Name

TPILOG TEXT=CLNLOGLN, *Log client id Cc
MSGNO=1, *Text is prebuilt C
MOD=TPIMAIN *Main is logging the message

* *
* *
* Getmain storage for Main task socket descriptor table. *
* Initialize socket descriptor table. *
* *
* *

L R2, TPIMMAXD *Max. number of socket descriptors

MH R2,=AL2 (TPIMSOLN) *Multiply by TPIMSO length

STORAGE OBTAIN, *Getmain for pool of socket C
LENGTH= (R2) , *— descriptor control Cc
LOC=BELOW *— blocks

ST R1l, TPIMSOTB *—> First TPIMSO

A Beginner's Guide to MVS TCP/IP Socket Programming 274

A Beginner's Guide to MVS TCP/IP Socket Programming

MVC TPIMSOTB+4 (4),=A(TPIMSOLN) *L'TPIMSO Entry

LH R2, TPIMMAXS *Number of TPIMSO entries
BCTR R2,0 *The last number

MH R2,=AL2 (TPIMSOLN) *Times length per entry
AR R2,R1 *—> Last TPIMSO entry

ST R2, TPIMSOTB+8 *Ready for BXLE

LM R1,R3, TPIMSOTB *TPIMSO BXLE addresses
SR R4 ,R4 *Socket counter

USING TPIMSO,R1
INITMSO EQU *

XC TPIMSO (TPIMSOLN) , TPIMSO *Clear TPIMSO entry

MVC TPIMSEYE,=CL8'TPIMSO' *Move in eyecatcher

STH R4, TPIMSNO *Socket number

LA R4,1 (R4) *Advance

BXLE R1l,R2,INITMSO *Do them all

DROP R1
* *
* *
* Start Server subtasks and initialize TPISCB entries *
* *
* *

LA R6,ECBPSTS *First Subtask Term. ECB pointer

LM R3,R5, TPIMSCBB *Loop addresses for TPISCBs

USING TPISCB,R3
INITSCB EQU *

XC TPISCB (TPISCBLN),TPISCB *Clear storage

MVC TPISEYE, =CL8'TPISCB' *Move in eyecatcher

MVC TPISMCB, =A (TPIMCB) *—> TPIMCB

LA R8, TPISTECB *—> Term. ECB

ATTACH EP=TPISERV, *Server subtask main module (o}

PARAM=((R3)), *Pass TPISCB as only parameter (o}
ECB=(R8) *Termination ECB

ST R1, TPISTCB *—> TCB of subtask

WAIT ECB=TPISIECB *Wait for subtask initialization

LA R1, TPISTECB *—> Subtask termination ECB

ST R1, 0 (R6) *Put it into ECB List

LA R6, 4 (R6) *Next one goes here

BXLE R3,R4,INITSCB *Start them all

S R6,=A(4) *This was last ECB Pointer

oI 0 (R6) ,BITO *Close ECB List

DROP R3
* *
* *
* Set up, so we can receive Modify commands from MVS operator *
* *
* We will actually never analyze input, but terminate as soon as *
* the Modify ECB is posted *
* *
* *

LA R2, COMMADDR *—> Communications Area pointer

EXTRACT (R2),FIELDS=COMM

L R2, COMMADDR *—> Communications Area

USING COMMAREA, R2

QEDIT ORIGIN=COMCIBPT,CIBCTR=1 *Only one Modify accepted

L R3, COMECBPT *—> Modify ECB

ST R3, ECBPMODI *Add to our Wait ECB-list

DROP R2
* *
* *
* We are now ready to get a SOCKET, BIND it to our port and issue *
* a LISTEN command. *
* *

A Beginner's Guide to MVS TCP/IP Socket Programming 275

A Beginner's Guide to MVS TCP/IP Socket Programming

* *

MVC TRCMLFUN, =CL8 ' SOCKET'

EZASMI TYPE=SOCKET, *Get a socket Cc
AF='INET', *In the INET addressing family C
SOCTYPE='STREAM', *Of type stream (o}
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc

ERROR=EZAERROR

ICM R2,15,RETCODE *Tf Retcode < zero it is

BM EZAERROR *— an error - else it is socketdescr

TPITRC 'Socket descriptor from SOCKET Call', (o}
REG=R2 *Trace new socket descriptor

LM R3,R5, TPIMSOTB *Our socket table

USING TPIMSO,R3
SOCKLLOP EQU *

CH R2, TPIMSNO *This socket descriptor?
BE SOCKLLOK *— Yes this is our listener socket.
BXLE R3,R4,SOCKLLOP *Loop thrugh them all
TPILOG MOD=TPIMAIN, *If error here, nothing will work Cc
MSGNO=10
B CLOSEDWN *Fatal error
SOCKLLOK EQU *
oI TPIMSBIT, TPIMSACT+TPIMSREA+TPIMSLIS
ST R2, TPIMSOCK *Just so we have it.
LH R1, TPIMPORT *Our port number
STH R1, SSTRPORT *Into socket structure for bind

MvVC TRCMLFUN, =CL8 'BIND'

TPITRC 'Issuing BIND with socket descriptor’, Cc
WORD=TPIMSOCK *Trace entry to Bind
EZASMI TYPE=BIND, *Bind socket to our port Cc
S=TPIMSOCK, *Our listener socket descriptor C
NAME=SOCSTRUC, *Port and INADDR ANY IP address (o}
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR
ICM R2,15,RETCODE *Tf Retcode < zero it is
BM EZAERROR *— an error
MVC TPIMSSOC, SOCSTRUC *This is listener socket struc.
DROP R3
MVC TRCMLFUN, =CL8'LISTEN'
TPITRC 'Issuing LISTEN with socket descriptor’, (o}
WORD=TPIMSOCK *Trace entry to Listen
EZASMI TYPE=LISTEN, *Issue listen call Cc
S=TPIMSOCK, *On our listener socket (o}
BACKLOG=10, *Max 10 in the backlog queue (o]
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR
ICM R2,15,RETCODE *Tf Retcode < zero it is
BM EZAERROR *— an error
*
*
Here our main loop starts. *
*

Based on our socket descriptor table, build the three bit strings to*

be used in a SELECT call, and issue the SELECT call. *
*

* ok ok ok ok F o *

*
DOSELECT EQU *

LM R3,R5, TPIMSOTB *BXLE addresses for socket table
USING TPIMSO,R3
XC SELMASKS (SELMASKL) , SELMASKS *Clear them all

A Beginner's Guide to MVS TCP/IP Socket Programming 276

A Beginner's Guide to MVS TCP/IP Socket Programming

SELMSOLP EQU *
™ TPIMSBIT, TPIMSACT
BZ SELMSONX

*Do we work with it?
*— No, try next one

POSTNMOD EQU *
T™ ECBSELE, BIT1
BO SELPOSTE
T™ ECBTLOGW, BIT1

*Was Select posted?
*— Yes, process select
*Did Logtask terminate?

A Beginner's Guide to MVS TCP/IP Socket Programming

TPIMASK SET, *Set Exception bit for all
MASK=ESNDMASK, *— our active
SD=TPIMSNO *— socket descriptors
T™ TPIMSBIT, TPIMSREA *Set read bit?
BZ SELMSONR *— No, no test for read
TPIMASK SET, *Set read bit for
MASK=RSNDMASK, *— for our
SD=TPIMSNO *— listener socket descriptor
SELMSONR EQU *
T™ TPIMSBIT, TPIMSWRT *Set write bit?
BZ SELMSONX *— No, no test for write
TPIMASK SET, *Set write bit for socket
MASK=WSNDMASK, *— descriptor if we have a
SD=TPIMSNO *— pending error message for it.
SELMSONX EQU *
BXLE R3,R4,SELMSOLP *Loop through all sock descr.
DROP R3
MVC TRCMLFUN, =CL8 ' SELECT'
TPITRC 'Issuing SELECT with MAXSOC',
WORD=TP IMMAXD *Trace entry to select
XC ECBSELE, ECBSELE *Clean up ECB
EZASMI TYPE=SELECT, *Select call
MAXSOC=TPIMMAXD, *Max. this many descr. to test
TIMEOUT=SELTIMEO, *One hour timeout value
RSNDMSK=RSNDMASK, *Read mask
RRETMSK=RRETMASK, *Returned read mask
WSNDMSK=WSNDMASK, *Write mask
WRETMSK=WRETMASK, *Returned write mask
ESNDMSK=ESNDMASK, *Exception mask
ERETMSK=ERETMASK, *Returned exception mask
ECB=ECBSELE, *Post this ECB when activity occurs
ERRNO=ERRNO, *— ECB points to an ECB plus 100
RETCODE=RETCODE, *— bytes of workarea for socket
ERROR=EZAERROR *— interface to use.
ICM R2,15,RETCODE *Tf Retcode < zero it is
BM EZAERROR *— an error
* *
* *
* Wait for something to happen, which can be one of the following *
* events: *
* 1. SELECT was posted *
* 2. Modify was issued from MVS operator: close down *
* 3. Log Writer Task terminated unexpected: close down *
* 4. A subtask ended prematurely *
* *
* *
DOMWAIT EQU *
WAIT 1,ECBLIST=ECBLIST *Wait for something
L R14, ECBPMODI *—> Modify ECB
T™ 0 (R14),BIT1 *Was modify used?
BZ POSTNMOD *— No, it was not modify
TPILOG MOD=TPIMAIN, *Message from TPIMAIN
MSGNO=11 *We are modified to Stop
WTO 'TPIMAIN Modified to STOP - Closing Down'
B CLOSEDWN *Close down the server address space

oo NN NN oo e Ne!

277

A Beginner's Guide to MVS TCP/IP Socket Programming

BZ NOTLOGT
TPILOG MOD=TPIMAIN,
MSGNO=12

B CLOSEDWN

*— No, test for server subtasks
*Message from TPIMAIN

*Log writer task terminated
*Treat as closedown

* % ok ok ok ok F * *

Test for terminated server subtask. If a server subtask ended
print out the task termination code on the log file.

We allow up to 2 times number of subtasks reinstates.

If reinstate counter is not exeeded, we attach the server subtasks
again, and continue processing.

NOTLOGT EQU *
LM R3,R5, TPIMSCBB
USING TPISCB,R3
TSERTERL EQU *
™ TPISTECB,BIT1

BZ TSERTERN
L R1, TPISTECB
SLL R1,8
SRL R1,4

XC DORD, DORD

ST R1,DORD+4

UNPK TERMCODE, DORD
NC TERMCODE, =6X'OF'
TR TERMCODE, TRHEX
LA R2, TERMTEXT
TPILOG MOD=TPIMAIN,

TEXT=(R2) ,
MSGNO=1
L R1, TPIMREIN
LH R2, TPIMNOST
SLL R2,1
CR R1,R2
BL TSERTREI
TPILOG MOD=TPIMAIN,
MSGNO=13
B CLOSEDWN

TSERTREI EQU *

1A R1, 1 (R1)

ST R1, TPIMREIN

XC TPISTECB, TPISTECB

LA R8, TPISTECB

ATTACH EP=TPISERV,
PARAM=((R3)),
ECB= (R8)

ST R1, TPISTCB

SR R8,R8

LR R9,R1

SLDL. RS, 4

STM R8,R9,DORD

UNPK TPISTCBE, DORD

NC TPISTCBE, =8X'OF'

TR TPISTCBE, TRHEX

WAIT ECB=TPISIECB

TPILOG MOD=TPIMAIN,
MSGNO=15

B DOMWAIT

TSERTERN EQU *
BXLE R3,R4,TSERTERL

*BXLE addresses for TPISCBs

*Did Server subtask terminate?
*— No, test next subtask

*Termination ECB Contents 00xxxxxx

*Remove wait and xxxxxx00
*— post bits Oxxxxxx0
*Clear work area

*Store as lower half of doubleword

*Unpack it

*Remove zones
*Translate to text

*—> Termination message
*Message from TPIMAIN

*R2 points to 80 character message

*Msgno=1 means prebuilt text
*So many reinstates until now
*So many server subtasks
*Multiply by two

*We allow 2*n'subtask resinstates
*— We are under, so do reinstate

*Message from TPIMAIN
*Reinstate limit is exceeded
*Do a close down

*Increment reinstate count
*Keep track of it..

*Clear ECB

*—> Server task Term. ECB
*Server subtask main module
*Pass TPISCB as only parameter
*Termination ECB

*—> TCB of subtask

*Make ready for double shift
*TCB address

*0000000x xxxxxxx0

*Store for Unpack

*Unpack

*Remove F's

*Translate to EBCDIC

*Wait for subtask initialization

*Message from TPIMAIN

*We have reinstated a server task

*Go into a new wait on ECBLIST

*Look for server task termination

TPITRC 'Wait completed - no ECBs posted',

A Beginner's Guide to MVS TCP/IP Socket Programming

* % ok ok ok F F * *

Q

278

A Beginner's Guide to MVS TCP/IP Socket Programming

W=ECBLIST, MOD=TPIMAIN

ABEND 1000, DUMP *This is a SNO error (!)
* *
* *
* Select was posted. *
* *
* First thing we must do is to synchronize our module with the *
* socket interface via the SYNC socket call. Return info from select *
* will be placed in our parameters when we issue the SYNC call (this *
* includes return codes and return masks from select). *
* *
* Tf SYNC is successfull, the RETCODE holds the number of selected *
* socket descriptors. We must remember to process ALL selected *
* socket descriptors; a socket descriptor will only be marked as *
* selected one time for a given activity. *
* *
* *
SELPOSTE EQU *
EZASMI TYPE=SYNC, *Synchronize function Cc
ECB=ECBSELE, *Select ECB plus 100 bytes workarea C
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR
ICM R15,15,RETCODE *Was everything OK
BM EZAERROR *— No, some error
ST R15, NOSELCD *Number of sd's selected
TPITRC 'SYNC completed - number of SDs returned', C
W=NOSELCD *Trace number of selected sd's
LM R3,R5, TPIMSOTB *Socket descr. table
USING TPIMSO,R3
SPMSOLP EQU *
TPIMASK TEST, *Test a bit Cc
MASK=RRETMASK, *— in the returned read mask (o}
SD=TPIMSNO *— for this socket descriptor
BNE SPMSONRD *No read pending on this one
L R15, NOSELCD *Decrement number of
BCTR R15,0 *— selected socket descriptors
ST R15, NOSELCD *— by one.
T™ TPIMSBIT, TPIMSLIS *Is it our listener socket?
BO SPDOACC *— Yes, do an accept
TPITRC 'Unexpected read returned', *We only expect read C
H=TPIMSNO *— on our listener socket
B SPECLOSE *Just close it
SPMSONRD EQU *
TPIMASK TEST, *Test a bit in the (o}
MASK=ERETMASK, *— returned exception mask C
SD=TPIMSNO *— for this seocket descriptor
BNE SPMSONEX *No exception pending in this one
L R15, NOSELCD *Decrement number of
BCTR R15,0 *— selected socket descriptors
ST R15, NOSELCD *— by one.
T™ TPIMSBIT, TPIMSEXP *Did we expect it?
BO SPECLOSE *— Yes, server has taken socket.
TPITRC 'Unexpected exception returned', *We only expect C
H=TPIMSNO *— exception, when takesocket is OK
B SPECLOSE *For everything else, just close it
SPMSONEX EQU *
TPIMASK TEST, *Test a bit in the (o}
MASK=WRETMASK, *— returned write mask (o}
SD=TPIMSNO *— for this socket descriptor
BNE SPMSONXT *No write pending
L R15, NOSELCD *Decrement number of

A Beginner's Guide to MVS TCP/IP Socket Programming 279

A Beginner's Guide to MVS TCP/IP Socket Programming

BCTR R15,0 *— selected socket descriptors
ST R15, NOSELCD *— by one.
™ TPIMSBIT, TPIMSWRT *Did we expect it?
BO SPWRITE *— Yes, write out message
TPITRC 'Unexpected Write returned', *We only expect write C
H=TPIMSNO *— for pending error message
B SPECLOSE *Close it
SPMSONXT EQU *
BXLE R3,R4,SPMSOLP *Someone must be ready
CLC NOSELCD, =A (0) *Should be zero now
BE DOSELECT *— It is, do new select
TPILOG MSGNO=14, *Not all selected sd's found. This C
MOD=TPIMAIN *— is an SNO error, but we will
B DOSELECT *— continue with new select.
* *
* *
* Write selected. *
* Write out pending message to client *
* *
* *
SPWRITE EQU *
MVC TRCMLFUN, =CL8 'WRITE'
TPITRC 'Write no-server message', *Trace write call (o}
H=TPIMSNO *— on this socket descriptor
LA R2, TPIMSNO *Socket descriptor
MVC REQLEN, MSGNOLEN *We want to send full message
XC ACTLEN, ACTLEN *Clean before call
MVC SENDFLAG, =A (SENDDATA) *We want to send the data
MVC TRCMLFUN, =CL8'SEND' *For EZAERROR routine
CALL TPISEND, (MAINGLOB, *EZA Global workarea Cc
MAINTASK, *EZA Task work area Cc
(R2), *Socket descriptor C
MSGNOSRV, *Output buffer C
REQLEN, *Requested length C
ACTLEN, *Returned actual length C
SENDFLAG, *SEND flag = Send data Cc
RETCODE, *EZA Retcode C
ERRNO) , VL *EZA Error number
LTR R15,R15 *Was send successfull ?
BZ SENDOK *— Yes, buffer has been sent
CH R15,=AL2 (4) *Did peer close socket?
BE SPECLOSE *— Yes, we close as well
B EZAERROR *Others means EZA error code
SENDOK EQU *
TPITRC 'Sent so many bytes', *Trace the send call C
W=ACTLEN
B SPECLOSE *And close the socket
* *
* *
* Close a socket and free socket descriptor entry *
* *
* *
SPECLOSE EQU *
TPITRC 'Closing down socket', *Trace close call (o}
H=TPIMSNO *For this socket descriptor
MVC TRCMLFUN, =CL8 'CLOSE'
EZASMI TYPE=CLOSE, *Close socket C
S=TPIMSNO, *This socket descriptor C
ERRNO=ERRNO, C
RETCODE=RETCODE, (o}

ERROR=EZAERROR
ICM R15,15,RETCODE *OK?

A Beginner's Guide to MVS TCP/IP Socket Programming 280

A Beginner's Guide to MVS TCP/IP Socket Programming

BM EZAERROR
MVI TPIMSBIT, 0
B SPMSONXT
DROP R3

*— No..
*Clear out in-use flag
*Test next sd after select post

* %k ok F * *

Read selected on Listener socket;
R3 points to listener socket descriptor entry

issue an ACCEPT

SPDOACC EQU *
USING TPIMSO,R3

MvVC TRCMLFUN, =CL8 'ACCEPT'

TPITRC 'Issuing ACCEPT',
H=TP IMSNO

EZASMI TYPE=ACCEPT,
S=TPIMSNO,
NAME=SOCSTRUC,
ERRNO=ERRNO,
RETCODE=RETCODE,
ERROR=EZAERROR

ICM R2,15,RETCODE

BM EZAERROR

*Trace accept call

*— on this socket descriptor
*Accept new connection

*On listener socket descriptor
*Returned client socket structure

*OK?
*— No, error indicated

TPITRC 'ACCEPT returned new socket descriptor', *Trace

REG=R2
LR R15,R2
MH R2, =AL2 (TPIMSOLN)
A R2, TPIMSOTB
DROP R3
USING TPIMSO,R2

*— new socket descriptor

*We need it later

*Offset into socket table

*+ start gives new entry

*Drop listener socket descr. base
*Base for the new descriptor no.

XC TPIMSO (TPIMSOLN) , TPIMSO *Clear entry

STH R15, TPIMSNO
oI TPIMSBIT, TPIMSACT
MvVC TPIMSSOC, SOCSTRUC

*Descriptor number
*Socket descriptor temp. active
*Socket structure

and POST server task.

available server.

* ok ok ok ok Ok Ok Ok F O *

Find an available server subtask,

issue a GIVESOCKET

If no server subtask is available, we mark the new socket
descriptor for write pending and includes it in a new select.
When write is selected, we write out an error message about no

LM R7,R9, TPIMSCBB

USING TPISCB,R7
ACCSUBLP EQU *

™ TPISECB,BITO

BO ACCFREST

BXLE R7,R8,ACCSUBLP

MVC TPIMSENO,=AL2 (1)

oI TPIMSBIT, TP IMSWRT

B SPMSONXT
ACCFREST EQU *

MVC CLNNAME, TPIMCNAM

MVC CLNTASK, TPISTCBE

L R15, CLNFAM
CVD R15, DORD
oI DORD+7, X' OF'

UNPK GIVLOGAF,6 DORD
LH R15, TPIMSNO

*Subtask BXLE addresses

*Is this one waiting for work?

*— Yes, we found a free server task
*Look through them all

*Indicate no server

*We want to write

*Test next sd after select

*Our Client ID Address Space Name
*To this subtask

*Addressing Family

*From binary to decimal

*A nice sign.

*Into logging line

*Socket descr. to give

A Beginner's Guide to MVS TCP/IP Socket Programming

* %k ok F * *

* ok ok ok ok Ok Ok F F O *

Q

(el elNe oS!

281

A Beginner's Guide to MVS TCP/IP Socket Programming

CvD R15, DORD *From binary to decimal

oI DORD+7, X' OF' *A nice sign.

UNPK GIVLOGSD, DORD *Into logging line

MVC GIVLOGAS, CLNNAME *Address Space Name

MVC GIVLOGST, CLNTASK *Subtask Name

TPILOG TEXT=GIVLOGLN, *Log client id to give sd to c
MSGNO=1, *Text is prebuilt C
MOD=TPIMAIN *Main is logging the message

MVC TRCMLFUN, =CL8 'GIVESOCK'

EZASMI TYPE=GIVESOCKET, *Givesocket Cc
S=TPIMSNO, *Give this socket descriptor C
CLIENT=CLNSTRUC, *— to an available server task (o}
ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR

ICM R15,15, RETCODE *OK ?

BM EZAERROR *— No, tell about it.

MVC TPISSOD, TPIMSNO *Main task sockdesr. for takesocket

POST TPISECB,O0 *Wake up server task

oI TPIMSBIT, TPIMSEXP *We expect an except. aft. takesock.

DROP R2,R7 *Drop work base register

USING TPIMSO, R3 *Back to listener socket descriptor

B SPMSONXT *Test next socket after select

* *
* *
* Here we come if non-successfull EZASMI macro call *
* Write out message to log file, and terminate. *
* *
* *
EZAERROR EQU *

TPILOG MOD=TPIMAIN, *TPIMAIN is logging message Cc
FUNC=TRCMLFUN, *This socket function (o}
ERRNO=ERRNO, *Socket error number (o}
RETCODE=RETCODE, *Socket return code (o}
MSGNO=0 *Construct socket error message

* *
* *
* Closedown *
* *
* Try to post server subtask for orderly shutdown - followed *
* by detach. *
* *
* Msgno=999 instructs the log writer task to close its logfile *
* DCB and to terminate. Allow both server subtasks and log writer *
* task time to do proper termination. *
* *
* *
CLOSEDWN EQU *

1M R3,R5, TPIMSCBB *SCB bxle

USING TPISCB,R3
CLSLOOP EQU *

CLC TPISTCB,=4X'00" *Is the task attached ?

BE CLSNODET *— No, so do not detach it.

T™ TPISECB, BITO *Is it waiting for work?

BO CLSSWAIT *— Yes, ask it to terminate.

STIMER WAIT, *Wait 500 msec for C
BINTVL=MSEC500 *— it to finish work.

B CLSDET *— and then just detach it.

CLSSWAIT EQU *

POST TPISECB, 4 *Post with RC=4 for terminate

STIMER WAIT, *Wait 500 msec for C
BINTVL=MSEC500 *— it to terminate

A Beginner's Guide to MVS TCP/IP Socket Programming 282

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok F * *

* F F * *

* F * * *

CLSDET EQU * *— and then just detach it.
LA R2, TPISTCB *—> Server TCB address
DETACH (R2) *Just go away now...
CLSNODET EQU *
BXLE R3,R4,CLSLOOP *Kill them all
DROP R3
TPILOG MOD=TPIMAIN, *Tell Log Writer Task to close
MSGNO=999 *— log file and terminate
STIMER WAIT, *Allow time to close the
BINTVL=MSEC500 *— logfile and terminate
LA R2, TPIMLTCB *—> Log writer TCB address
DETACH (R2) *Kill Log Writer task
EZASMI TYPE=TERMAPI *Terminate socket API
TERM RC=0 *And out we go
LTORG
*
*
* Select masks used by the socket select call and select control
* variables
*
*
DS OF
DC CL16'SELECT MASKS' *Eyecatcher
SELMASKS DS OF
RSNDMASK DC XL8'00000000' *Read mask
RRETMASK DC XL8'00000000' *Returned read mask
WSNDMASK DC XL8'00000000' *Write mask
WRETMASK DC XL8'00000000' *Returned write mask
ESNDMASK DC XL8'00000000' *Exception mask
ERETMASK DC XL8'00000000' *Returned exception mask
SELMASKL EQU *—-SELMASKS
*
NOSELCD DC A(0) *Keep track of selected sd's
SELTIMEO DC A(3600,0) *One hour timeout
ECBSELE DC A(0) *Select ECB
DC 100X'00" *Required by EZASMI !!
*
*
* No available server error message
*
*
MSGNOSRV DC c'B',C'TPI',C'0007'
DC CL80'No server is currently available - try again later'
MSGNOLEN DC A (*-MSGNOSRV) *L'message
*
*
* Socket interface variables and structures
*
*
TRCMLFUN DC CL8' ' *Current socket function
ERRNO DC A(0) *Errorno from EZASMI
RETCODE DC A(0) *Returncode from EZASMI
*
IDENTSTR DS OoF *INITAPI: Ident structure
IDENTTCP DC CL8' ' *TCP/IP Address space name
IDENTJOB DC CL8' ' *My Address space name
*
SOCSTRUC DS OoF *BIND and ACCEPT: Socket structure
SSTRFAM DC AL2(2) *TCP/IP Addressing family
SSTRPORT DC AL2 (0) *Port number
SSTRADDR DC AL4 (0) *IP Address (=X'00' is INADDR_ANY)
SSTRRESV DC 8X'00" *Reserved

A Beginner's Guide to MVS TCP/IP Socket Programming

283

A Beginner's Guide to MVS TCP/IP Socket Programming

*

CLNSTRUC DS OoF *GIVESOCKET: Client structure
CLNFAM DC A(2) *TCP/IP Adressing family
CLNNAME DC CL8' ' *Address space name of target
CLNTASK DC CL8' ' *Subtask id of target
CLNRESV DC XL20'00' *Reserved
* *
* *
* TPIRECV and TPISEND Communication fields *
* *
* *
REQLEN DC A(0) *Requested receive/send length
ACTLEN DC A(0) *Actually received/sent length
SENDFLAG DC A(0) *SEND flags
SENDDATA EQU O *Send data
* *
* *
* Main task Control Block *
* *
* *
TPIMCB TPIMCB TYPE=CSECT *Main Control Block
* *
* *
* ECBlist for wait *
* *
* *
ECBLIST DS OoF
ECBPMODI DC A (0) *—> Modify ECB

DC A (ECBSELE) *—> Select ECB

DC A (ECBTLOGWN) *—> Logwriter termination ECB
ECBPSTS DC 10A(0) *Max 10 subtasks term. ECB's
* *
* *
* Subtask termination log message *
* *
* *
TERMTEXT DC 0CcL8o' '
TERMCODE DC CL6' ',CL1l' ' *Completion code

DC CL (80— (*—TERMTEXT)) 'Subtask prematurely terminated'
* *
* *
* Logging line for client id *
* *
* *
CLNLOGLN DC ocL8o' '

DC C'TPIMAIN Client ID '

DC C'Family='
CLNLOGAF DC CL4' ',CLl' ' *Addressing Family

DC C'Address Space='
CLNLOGAS DC CL8' ',CLl' ' *Address Space Name

DC C'Subtask="
CLNLOGST DC CL8' ' *Subtask Name

DC CL (80— (*-CLNLOGLN)) ' '
* *
* *
* Logging line client id on givesocket *
* *
* *
GIVLOGLN DC 0CcL8o' '

DC C'Givesocket SD='
GIVLOGSD DC CL4' ',CLl' '

DC C'Family="

A Beginner's Guide to MVS TCP/IP Socket Programming 284

A Beginner's Guide to MVS TCP/IP Socket Programming

GIVLOGAF DC CL4' ',CLl' ' *Addressing Family
DC C'Address Space='
GIVLOGAS DC CcL8' ',CLl' ' *Address Space Name
DC C'Subtask="
GIVLOGST DC CL8' ' *Subtask Name
DC CL (80- (*—GIVLOGLN)) ' '
*
*
* Various work fields
*
*
COMMADDR DC A(0) *—> Communications Area for Modify
ECBTLOGW DC A(0) *Log writer termination ECB
DORD DC D'O’ *For unpack/pack
TRHEX DC C'0123456789ABCDEF' *Hex to text translate table
*
*
* Socket API - Global workarea
*
*
MAINGLOB EZASMI TYPE=GLOBAL, *Global work area is
STORAGE=CSECT *— located here
*
*
* Socket API - Main Task workarea
*
*
MAINTASK EZASMI TYPE=TASK, *Main task work area is

END

STORAGE=CSECT *— located here

H.1.2 TPILOGWT Logwriter Data Services Task

* F * * *

* F * * *

* F * * *

khkkhkhkkhkhkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhhkk

*

* Name:
*

* Function:

*
*

* Interface:

Logic:

* ok ok ok ok ok ok Ok ok Ok ok ok ok ok Ok Ok Ok F * *

TPILOGWT

Log writer Data Services Task in the TPI server
application.

Rl -> parameter list with one pointer:

+0 -> TPI Main task Control Block, which holds the
parameters required by TPILOGWT to write out
a message to the log file on DD stmt TPILOG.

* ok ok ok ok Ok Ok Ok F O *

This program executes as an independent subtask attached¥*

by TPIMAIN as part of initialization.

During startup, it will open a DCB for the TPILOG
dataset. TPIMAIN waits for TPILOGWT to initialize on
TPIMLDON ECB in the Main task Control Block, which
TPILOGWT posts when initialization is done.

Requests to print a message are initiated from other
tasks via the TPILOG macro. Combined processing of
TPILOG Macro and TPILOGWT is:

1. TPILOG macro enqueues on TPI, TPILOGWT to
serialize use of the Log Writer interface
fields in the Main task Control Block.

2. When TPILOG macro gets its enqueue, it builds
TPILOGWT parameters in the Main task Control
Block.

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok ok ok ok Ok Ok Ok Ok Ok F F * *

285

A Beginner's Guide to MVS TCP/IP Socket Programming

waiting on for work.

writing a message to log file

Abends: - none -

Returncode: - none -

Written: May 28'th 1994 at ITSO Raleigh
Modified:

3. TPILOG macro posts TPIMLECB, which TPILOGWT is

4. TPILOG macro then issues a wait on TPIMLDON.
5. TPILOGWT wakes up and processes the log request

6. When TPILOGWT has finished processing this
request it posts TPIMLDON, which TPILOG macro is
waiting on. TPILOGWT then issues a new wait on
TPIMLECB - waiting for a new log request.

7. The TPILOG macro dequeues from TPI,
exits from the macro expansion code.

TPILOGWT and

If TPILOGWT receives a message number of 999,
will close the log file DCB and terminate.

EE N I S S S R S SRR R N

* ok ok ok ok ok ok ok Ok ok Ok ok Ok Ok ok Ok Ok Ok Ok Ok F * *

hkhkkkhkkkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkkkkkx

*

*
Instream macro for formatting numbers *
*
*
MACRO
FORMNUM &FROM, &TO
L R15, &FROM
CvD R15, DWORD
oI DWORD+7, X' OF'
UNPK &TO.,DWORD
MEND
* *
* *
* Instream macroe for generating message table entry *
* *
* *
MACRO
MSG &NO, &TEXT
DC A(&NO.),CL80&TEXT.
MEND
*
TPIMCB TPIMCB TYPE=DSECT *Main task Control Block
*
TPILOGWT INIT 'Log data set writer task',K MODE=24
* *
* *
* Initialize - open DCB and put out greeting message on log file. *
* *
* *
L R9, 0 (R1) *—> Main task Control Block (TPIMCB)
USING TPIMCB,R9 *Address it
OPEN (TPILOG, (OUTPUT)) *Open our log writer DCB
PUT TPILOG, HD1 *Print our header line
* *
* *
* For each request, post back when done - as requester is waiting *
*

* for us to complete work on TPIMLDON in the main task Control

A Beginner's Guide to MVS TCP/IP Socket Programming

286

*
*
*
*
*
*

A Beginner's Guide to MVS TCP/IP Socket Programming

Block.

Then issue a wait on TPIMLECB also in the Main task Control Block
for a new work request.

WAITWORK EQU *

* ok ok F * *

* ok ok ok ok Ok Ok Ok F * *

POST TPIMLDON, O *Tell requester, we are done.

XC TPIMLECB, TPIMLECB *Clear our ECB

WAIT ECB=TPIMLECB *Wait for next work request

CLC TPIMLMNO, =A (999) *Means close down

BE GETOUT *— So just close DCB and exit.

TIME DEC, *Let us see the current time
TIMENOW, *— when we were woken up

LINKAGE=SYSTEM

Build fixed part of each trace line: timestamp, module and message
number

MVI LIN,C' ' *Initialize output line

MVC LIN+1(L'LIN-1) ,LIN *- with spaces

MVC EDWORK, EDMASK *Time edit mask

LM R2,R3, TIMENOW *hhmmssth xxxx0000

SRDL R2,28 *Shift out so 00000h hmmssthx
STM R2, R3, DWORD *Treat as decimal

oI DWORD+7, X' OF' *Put in a sign

ED EDWORK, DWORD+3 *Edit time as hh:mm:ss.th
MVC TIMESTMP, EDWORK+1 *Time to output line

MVC MODULE, TP IMLMOD *Name of calling module
FORMNUM TPIMLMNO, MSGNO *Format message number to line

Do message code specific processing:

Msgno = 0 means we must format Socket interface return info

Msgno = 1 means that a prebuilt text string has been passed
as message text, and we just put it out

For all other message numbers passed, a corresponding text is
found in the message table, which is part of this module.

L R2, TPIMLMNO *Passed message number
LTR R2,R2 *MSGNO=0 means EZASMI returninfo
BZ EZAINFO *Go and format socket return info
Cc R2,=A(1) *MSGNO=1 means passed text string
BE TEXTOUT *Just put out the passed string
LM R3,R5,MSGTABBX *Search message table
MSGLOOP EQU *
CLC TPIMLMNO, 0 (R3) *This message ?
BE FOUNDMSG *— Yes, print it
BXLE R3,R4,MSGLOOP *Look through them all
LA R3, DUMMYMSG *If not found, use a dummy text
FOUNDMSG EQU *
MVC TEXT, 4 (R3) *Print table message text
PUT TPILOG, LIN *Print it
B WAITWORK *Wait for next request
TEXTOUT EQU *
MvVC TEXT, TPIMLTXT *Print passed text string
PUT TPILOG, LIN *Print it
B WAITWORK *Wait for next request

A Beginner's Guide to MVS TCP/IP Socket Programming

* % ok F * *

* ok ok F * *

* ok ok ok ok Ok Ok Ok F * *

287

EZAINFO EQU
MvVC
MvVC
MvVC
MvVC

A Beginner's Guide to MVS TCP/IP Socket Programming

*

EZAFUN, =C'EZASMI Function='

EZAERR, =C'ErrNo="

EZARET, =C'RetCode="'

EZAFUNCD, TPIMLFUN *Socket function

FORMNUM TPIMLERR, EZAERRNO *Socket error number
FORMNUM TPIMLRET, EZARETCD *Socket return code

PUT
B

TPILOG, LIN *Print it
WAITWORK *Wait for next request

terminate

* ok ok F * *

When we recive msgno=999, we close the log file DCB and

GETOUT EQU
CLOSE
POST
TERM
LTORG

*

(TPILOG) *Close log file DCB
TPIMLDON, O *Tell requester, we are done.
RC=0 *No reason for anything else.

* F * * *

Formatting work fields

EDWORK DC crLiz2' '
EDMASK DC XL12'2120207A20207A20204B2020"'
DWORD DC D'0’
TIMENOW DC XL16'00'
*
*
* Header line and detail line layout
*
*
HD1 DC CL130'1TPI Log Writer Task has started'
*
LIN DS 0CL130' '
DC c'
TIMESTMP DC cLi1i' ',CrLi' '
MODULE DC cL8' ',CLl' '
MSGNO DC CL3' ',CLl' '
EZAFUN DC C'EZASMI Function='
EZAFUNCD DC cL8' ',CLl' '
EZAERR DC C'ErrNo="
EZAERRNO DC CL5' ',CLl' '
EZARET DC C'RetCode="
EZARETCD DC CL4' ',CLl' '
ORG EZAFUN
TEXT DC CL80' '
DC CL(130-(*-LIN))"' '

Log file DCB

* F * * *

TPILOG DCB

DDNAME=TPILOG, MACRF= (PM) , RECFM=FBA, LRECL=130,
DSORG=PS, BLKSIZE=1300

Message text

* F * * *

table - key is message number

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok F * *

* F * * *

* F * * *

* F * * *

* F * * *

288

A Beginner's Guide to MVS TCP/IP Socket Programming

MSGTABBX DC A (MSGTAB, 84, MSGTABSL-84)
MSGTAB DS oc

MSG 10, 'Returned socket descriptor is not in TPIMSO table.'

MSG 11, 'TPIMAIN Modified to STOP - we close down.'
MSG 12, 'Log Writer Task terminated - we close down.'

MSG 13, 'Server subtask reinstate limit exceeded - we close dC

own.'

MSG 14, 'Not all selected socket descriptors were found - we C

will continue with new select.'
MSG 15, 'Server subtask has been reinstated.'

MSGTABSL EQU *

DUMMYMSG DC A (998) ,CL80'Error code missing in error code table.'

END

H.1.3 TPISERYV Concurrent Server Subtask

khkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhhkkk

*

* Name: TPISERV

*

* Function: This module is the main module in each TPI server

* subtask

*

* Interface: Rl —-> parameter list with one pointer:

* +0 -> TPISCB TPI Server task Control Block

* Pointers to the TPI Main task Control Block and
* to the socket global workarea are picked up from
* the Server task Control Block.

*

* Logic: This module receives control as the main module when

* the main task issue an Attach to start a new server

* subtask.

* 1. Pointers to the Main task Control Block and to the
* EZA Global Workarea are established.

* 2. Pointer to the task level EZA Work Area is set up.
* 3. When the task has finished initialization, it posts
* TPISIECB in the Server task Control Block, which

* the main task is waiting on.

* 4. The module then enters a loop, where it waits for

* work on TPISECB in the Server task Control Block,

* which will be posted by the main task, when a new

* connection arrives from the network.

* If the main task posts with an RC=0 it means work.
* If the main task posts with an RC=4 it means

* shutdown.

* 5. When work arrives, a Takesocket is issued to take

* the socket given by the main task. The main task

* passes the socket descriptor in the Server task

* Control Block and the main task client id in the

* Main task Control Block.

* 6. DB2 connection is established and a DB2 plan is

* opened.

* 7. Data is received over the socket interface into a

* buffer.

* 8. The buffer is passed to TPISERVD, which will do the
* required processing on it.

* 9. When control returns from TPISERVD, the input buffer
* has been replaced by an output buffer, which is sent
* over the socket interface.

* 10. The socket is closed.

* 11. The connection with DB2 is closed.

A Beginner's Guide to MVS TCP/IP Socket Programming

L I I N S R R R S S R R N R N SRR N R

289

A Beginner's Guide to MVS TCP/IP Socket Programming

* 12. Processing continues at item no. 4 above. *
* *
* Abends: - none - *
* *
* Returncode: - none - *
* *
* Written: May 28'th 1994 at ITSO Raleigh *
* *
* Modified: *
* *
khkkhkkkhkkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhhkkhkhkhkhkkhkhkkhkhkkhhkkhkhkhkhkkhkhkkhkhkkhkhkkhkkkhkkk
PRINT GEN
TPIMCB TPIMCB TYPE=DSECT *Main task Control block dsect
TPISCB TPISCB TYPE=DSECT *Server task Control Block dsect
TPIREC TPIREC TYPE=DSECT *TPI input and output record dsect
PRINT NOGEN
EZAGLOB EZASMI TYPE=GLOBAL, *EZA Global work Area dsect
STORAGE=DSECT
*
TPISERV INIT 'TPI Server task', RENT=NO,MODE=24,BASE=(12,11)
* *
* *
* Pointer for Server task Control Block (TPISCB) is passed from *
* the main task on the attach call. *
* Addressability to the Main task Control Block (TPIMCB) and the *
* main task EZA Global Work Area is established. *
* Addressability to task level EZA Work area is established. *
* *
* Subtask client ID is built, and a socket INITAPI call *
* is issued. *
* *
* Main task waits for server subtask to initialize on TPISIECB. *
* *
* *
L R10,0(R1) *—> Server task Control Block
USING TPISCB,R10 *Server task Control Block
L R9, TPISMCB *—> Main task Control Block
USING TPIMCB,R9 *Main task Control Block
TPITRC TYPE=INIT, *Enable trace points
MOD=TPISERV, *Tracing module is TPISERV
TRACE=YES
TPITRC 'TPISERV entered’,
REG=R10 *Address of TPISCB
L R8, TPIMGLOB *—> EZA Global work area
USING EZAGLOB, R8 *EZA Global work area
LA R1,EZATASK *—> EZA task work area
ST R1, TPISTASK *Just so we have it.
L R3,X'10" *—> CVT
L R3, 0 (R3) *—> TCB Words
L R3, 4 (R3) *—> Current TCB (My TCB)
SR R2,R2 *Make ready for double shift
SILDL R2,4 *0000000x xxxxxxx0
STM R2,R3, DORD *Store for Unpack
UNPK TPISTCBE,DORD *Unpack
NC TPISTCBE, =8X'OF' *Remove F's
TR TPISTCBE, TRHEX *Translate to EBCDIC
MVC TRCMLFUN, =CL8 ' INITAPI'
MVC IAPITCP, TPIMTCPI *TCP/IP address space name
MVC IAPIAS, TPIMCNAM *Our address space name
EZASMI TYPE=INITAPI, *TInitialize socket API
MAXSOC=IAPISOCC, *This many sockets
SUBTASK=TPISTCBE, *My TCB address in EBCDIC

A Beginner's Guide to MVS TCP/IP Socket Programming

Q

290

* ok ok ok ok ok F * *

A Beginner's Guide to MVS TCP/IP Socket Programming

IDENT=IAPIIDEN,
MAXSNO=IAPISNO,
ERRNO=ERRNO,
RETCODE=RETCODE

ICM R15,15,RETCODE

BM EZAERROR

*TCP/IP AS name and my AS name
*This many socket descriptors

*Did we do well ?
*— No, deal with it.

MvVC TRCMLFUN, =CL8 'GETCLNID'

EZASMI TYPE=GETCLIENTID,
CLIENT=TPISCLNI,
ERRNO=ERRNO,
RETCODE=RETCODE,
ERROR=EZAERROR

ICM R15,15,RETCODE

BM EZAERROR

L R15, TPISCDOM
CvD R15, DORD
oI DORD+7, X' OF'

UNPK CLNLOGAF, DORD

MVC CLNLOGAS, TPISCNAM

MVC CLNLOGST, TPISCTSK

TPILOG TEXT=CLNLOGLN,
MSGNO=1,
MOD=TPISERV

POST TPISIECE, 0

*Get our own client id

*Store it in Server task Control B.

*Was it OK

*— No, stop now.
*Addressing Family

*From binary to decimal
*A nice sign.

*Into logging line
*Address Space Name
*Subtask Name

*Log client id

*Text is prebuilt

*Main is logging the message
*OK, we have initialized

Wait-for-Work loop starts here.
when there is work to be done.

RC=0 means work to do.
RC=4 means shutdown.

Main task will post TPISECB,

WAITLOOP EQU *
TPITRC 'TPISERV Going to sleep.'’,

* ok ok ok ok Ok Ok Ok F O F

REG=R10
XC TPISECB, TPISECB
WAIT ECB=TPISECB

TPITRC 'TPISERV Woke up',

W=TPISECB
L R2, TPISECB
SLL R2,8
SRL R2,8

LTR R2,R2
BNZ GETOUT

*Address of TPISCB
*Clean up
*Wait for work

*ECB in trace

*Let us see the RC

*Get rid of

*— post and wait bits

*RC=0 means work

*Anything else means shutdown

Main task socket descriptor is passed in TPISCB as TPISSOD.
Main task client id is in TPIMCB as TPIMCLNI.

On Takesocket, we must point to the socket descriptor and the
client id from the task that issued Givesocket.

Takesocket returns a new socket descriptor, which will be used
in this subtask for further communication.

MvC TRCMLFUN, =CL8 ' TAKESOCK'
TPITRC 'Takesocket With old descriptor’',

H=TPISSOD

EZASMI TYPE=TAKESOCKET,
CLIENT=TPIMCLNI,
SOCRECV=TPISSOD,

*Trace old socket descr.
*Takesocket

*Main task client id structure
*Main task socket descriptor

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok ok ok ok F * *

* ok ok ok ok Ok Ok Ok F O *

Q

oo e Ne!

291

A Beginner's Guide to MVS TCP/IP Socket Programming

ERRNO=ERRNO, Cc
RETCODE=RETCODE, Cc
ERROR=EZAERROR
ICM R15,15, RETCODE *Did we do well ?
BM EZAERROR *— No, deal with it.
STH R15, TPISNSOD *Server task socket descr.no
TPITRC 'Takesocket returned new descriptor', C
REG=R15 *Trace new socket descriptor
* *
* *
* Issue a Getpeername call to obtain socket address structure of *
* client. Format and print it on log file. *
* *
* *
MVC TRCMLFUN, =CL8 ' GETPEERN''
EZASMI TYPE=GETPEERNAME, *Getpeername c
S=TPISNSOD, *Of connected client (o}
NAME=PEERNAME, *Return socket address struc here (o}
ERRNO=ERRNO, C
RETCODE=RETCODE, C
ERROR=EZAERROR
ICM R15,15,RETCODE *Did we do well ?
BM EZAERROR *— No, deal with it.
LH R2, PEERFAM *Addressing family of peer
CVD R2, DORD *To decimal
oI DORD+7,X'OF' *Put in sign
UNPK PERLOGAF, DORD *Into logging line
LH R2, PEERPORT *Port number of peer
CVD R2, DORD *To decimal
oI DORD+7,X'OF' *Put in sign
UNPK PERLOGPO, DORD *Into logging line
CALL TPIINTOA, (PEERIP, *Convert from 4 bytes network order C
PERLOGIP) ,VL *— to 15 char text.
TPILOG TEXT=PERLOGLN, *Log peers socket address Cc
MSGNO=1, *Text is prebuilt C
MOD=TPISERV *From TPISERV
* *
* *
* Open our DB2 plan, and let CAF issue an implicit DB2 connection. *
* The DB2 subsystem id is picked up from the Main task Control Block. *
* *
* *
MvVC CAFFUNC, =CL12'OPEN' *Open a PLAN
MVC CAFSSNM, TPIMDB2 *DB2 subsystem name
MVC CAFPLAN, =CL8'TPISERV' *DB2 plan name
CALL DSNALI, (CAFFUNC, *Function=0OPEN Cc
CAFSSNM, *Subsystem name (o}
CAFPLAN, *Plan name=TPISERV Cc
CAFRC, *CAF Return code Cc
CAFREAS) ,VL *CAF Reason code
CLC CAFRC,=A(0) *Was it OK?
BE CAFOPNOK *— Yes, we have a connection
TPITRC 'CAF Open Return Code', *Trace the bad Cc
W=CAFRC *— CAF Return code
TPITRC 'CAF Open Reason Code', *Trace the bad Cc
W=CAFREAS *— CAF Reason code
B CLOSESOK *And give up this socket.
* *
* *
* Use TPIRECV for the actual socket RECV call. *
* *
* *

Start with a peek at the first 5 bytes.

A Beginner's Guide to MVS TCP/IP Socket Programming 292

Based on the
call TPIRECV

* ok ok ok ok ok Ok Ok Ok F * *

A Beginner's Guide to MVS TCP/IP Socket Programming

The first byte in the received data is

a record code we use to decide how many bytes we must read to have
a full record. The next 4 bytes is used to decide wether the
received data is ASCII or EBCDIC. The fixed text in our application
is 4 bytes with the value 'TPI '.

decision about the number of bytes and bytes read, we
again for an actual read of the number of bytes we

now know should be there.

CAFOPNOK EQU
LA
LA
MvVC
MvVC
MvVC
CALL

LTR
BZ
CH
BE
B
PEEKOK EQU

TPITRC

LM
READFID EQU
CLC
BE
BXLE
LA
USING
MVI
CLC
BE
MVI
RESP3EBC EQU
MVI
MvVC
B
DROP
GOTANID EQU
LH
ST
XC

MvVC
MvVC
CALL

*

R6,BUFFER *Begin to read into
R5, TPISNSOD *Socket descriptor
REQLEN, =A (5) *We want to see first 5 bytes

RECVFLAG, =A (RECVPEEK) *We just want to peek.
TRCMLFUN, =CL8 'RECV' *For EZAERROR routine

TPIRECV, ((R8), *EZA Global workarea
EZATASK, *EZA Task work area
(R5), *Socket descriptor
(R6) , *Input buffer
REQLEN, *Requested length
ACTLEN, *Returned actual length
RECVFLAG, *RECV flag = Peek at data
RETCODE, *EZA Retcode
ERRNO) , VL *EZA Error number
R15,R15 *Successfull ?
PEEKOK *— Yes, buffer has first 5 bytes
R15,=AL2 (4) *Did peer close socket?
CLOSESOK *— Yes, we close as well
EZAERROR *Others means EZA error code
*
'Peek returned so many bytes',
W=ACTLEN
R1,R3,RECIDBXL *BXLE for record IDs
*
0(1,R1l),BUFFER *First byte is record ID
GOTANID *This is it
R1,R2,READFID *If not fond - error message back:
R6,BUFFER *—> Input buffer
TPIREC,R6 *Let us see if it is ascii/ebcdic
TPISCTYP, TPISEBCD *Default client is EBCDIC
IIDENT, =CL4'TPI' *Is client in EBCDIC?
RESP3EBC *— Yes, flag is correct: EBCDIC
TPISCTYP, TPISASCI *— No, set client flag: ASCII

*

IRECID, IRESP *Build error response with
ICODE,=CL4'0003" *— errorcode = 0003 (invalid recid)
PREPSEND *Go and send it.

R6 *Was only temporary for error 0003.
*

R2,1(R1) *Length of this record type

R2, REQLEN *So long is pending message

ACTLEN, ACTLEN *Just clean it before call
R6,BUFFER *—> Input data

R5, TPISNSOD *Socket descriptor

RECVFLAG, =A (RECVREAD) *We want to read the data now
TRCMLFUN, =CL8 'RECV' *For EZAERROR routine

TPIRECV, ((R8), *EZA Global workarea
EZATASK, *EZA Task work area
(R5), *Socket descriptor

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok ok ok Ok Ok Ok Ok F * *

o000 nan

Q

293

A Beginner's Guide to MVS TCP/IP Socket Programming

(R6) , *Input buffer
REQLEN, *Requested length
ACTLEN, *Returned actual length
RECVFLAG, *RECV flag = Peek at data
RETCODE, *EZA Retcode
ERRNO) , VL *EZA Error number
LTR R15,R15 *Successfull ?
BZ READOK *— Yes, buffer has full message
CH R15,=AL2 (4) *Did peer close socket?
BE CLOSESOK *— Yes, we close as well
B EZAERROR *Others mean EZA error code
*
*
* If input data is in ASCII, we translate the whole string into
* EBCDIC, and set a switch so we remember to translate output
* data from EBCDIC to ASCII before we send it.
*
* The buffer is then passed to TPISERVD, which will do whatever
* processing is needed and build output data in the buffer area.
*
*
READOK EQU *

USING TPIREC, R6

*Let us work on it.

TPITRC 'Receive returned so many bytes',

W=ACTLEN
MVI TPISCTYP, TPISEBCD
CLC IIDENT,=CL4'TPI'
BE RECINEBC
CALL EZACICOS5, ((R6),
ACTLEN) , VL
MVI TPISCTYP, TPISASCI
RECINEBC EQU *
CALL TPISERVD, ((R10),
BUFFER,
RECLEN) , VL

*Default client is EBCDIC
*Do we need ASCII translate
*— No, it is in EBCDIC
*Translate from ASCII to
*EBCDIC

*Client is ASCII

*—> Server task Control Block
*Input buffer
*L'input buffer

output record.

to send to the client.

L I I R R

On return from TPISERVD, the buffer holds a partly completed
If the request to TPISERVD was to fetch an existing DB2 record,

the buffer is complete and we need find out just how many bytes

If output is a message indicating successfull or unsuccessfull
processing, we find a suitable message text to pass back.

PREPSEND EQU *
LM R1,R3,RECIDBXL
SENDFID EQU *
CLC IRECID, O (R1)
BE SENDID
BXLE R1,R2,SENDFID
MVC ICODE,=CL4'0003'
MVI IRECID, IRESP
B PREPSEND
SENDID EQU *
LH R2,1(R1)
ST R2, RECLEN
CLI IRECID,IQRESP
BE SENDNRSP
CLC ICODE,=CL4'0006"

*BXLE for record IDs
*First byte is record ID
*This is it

*Look for it

* ok ok ok ok ok Ok F * *

* ok ok ok ok Ok Ok Ok Ok F * *

*Invalid record id (err in TPISERVD)

*Response
*Redrive BXLE

*Length of this record type
*So long is current record
*Is it a query response record?
*— Yes, buffer is complete.
*SQL Error message is complete.

A Beginner's Guide to MVS TCP/IP Socket Programming

(el elNe oS!

294

A Beginner's Guide to MVS TCP/IP Socket Programming

BE SENDNRSP *Do not modify DSNTIAR text

LM R1,R3,MSGBXLE *BXLE addresses for msgtext
SENDMLOP EQU *

CLC ICODE, 0 (R1) *This message code?

BE SENDMFND *— Yes, message found

BXLE R1,R2, SENDMLOP *Look through them all

MVC IMESSAGE, =CL80'No message text found'

B SENDNRSP *Default has been set
SENDMFND EQU *

MVC IMESSAGE, 4 (R1) *Return this message

If received data was ASCII, the client most likely wants the
response in ASCII again.

* ok ok F * *

SENDNRSP EQU *
™ TPISCTYP, TPISASCI *Is Client ASCII ?

BZ SENDIT *— No, just send data
CALL EZACICO04, (BUFFER, *Translate data from EBCDIC
RECLEN) , VL *— to ASCII

Send data to client, close socket, close DB2 connection and go
and wait for more work.

* ok ok F * *

SENDIT EQU *

LA R5, TPISNSOD *Socket descriptor
MVC REQLEN, RECLEN *We want to send full message
XC ACTLEN, ACTLEN *Clean before call

MVC SENDFLAG, =A (SENDDATA) *We want to send the data
MvVC TRCMLFUN, =CL8'SEND' *For EZAERROR routine

CALL TPISEND, ((R8), *EZA Global workarea
EZATASK, *EZA Task work area
(R5), *Socket descriptor
BUFFER, *Output buffer
REQLEN, *Requested length
ACTLEN, *Returned actual length
SENDFLAG, *SEND flag = Send data
RETCODE, *EZA Retcode
ERRNO) , VL *EZA Error number
LTR R15,R15 *Was send successfull ?
BZ SENDOK *— Yes, buffer has been sent
CH R15,=AL2 (4) *Did peer close socket?
BE CLOSESOK *— Yes, we close as well
B EZAERROR *Others means EZA error code

SENDOK EQU *
TPITRC 'Sent so many bytes', *Trace the send call
W=ACTLEN
CLOSESOK EQU *
MVC TRCMLFUN, =CL8 'CLOSE'
EZASMI TYPE=CLOSE, *Close the socket
S=TPISNSOD, *Subtask socket descriptor
ERRNO=ERRNO,
RETCODE=RETCODE,
ERROR=EZAERROR

ICM R15,15,RETCODE *Was close socket done ?

BM EZAERROR *— No, some error

TPITRC 'Close done', *Trace the close call
REG=R15

MvC CAFFUNC,=CL12'CLOSE'

A Beginner's Guide to MVS TCP/IP Socket Programming

* % ok * * *

* % ok F * *

o000

oo eNe!

295

A Beginner's Guide to MVS TCP/IP Socket Programming

CALL DSNALI, (CAFFUNC,
CAFTERMO,
CAFRC,
CAFREAS) ,VL

CLC CAFRC,=A(0)

BE WAITLOOP

*Function=CLOSE

*Termination options: Commit
*CAF Return code

*CAF Reason code

*Was CAF Close OK ?

*— Yes, wait for more work

TPITRC 'CAF Close Return Code', *Trace the bad

W=CAFRC

*— CAF Return code

TPITRC 'CAF Close Reason Code', *Trace the bad

W=CAFREAS
B WAITLOOP

*— CAF Reason code
*Wait for work

* ok ok ok * * *

If we receive an unexpected error code from the socket interface,
we write out diagnostic info to the log data set and close the
socket before we go and wait for new work.

EZAERROR EQU *

TPILOG MOD=TPISERV,
FUNC=TRCMLFUN,
ERRNO=ERRNO,
RETCODE=RETCODE,
MSGNO=0

EZASMI TYPE=CLOSE,
S=TPISNSOD,
ERRNO=ERRNO,
RETCODE=RETCODE

B WAITLOOP

*TPISERV module is logging
*This was the socket function
*— that gave this error code
*— with this retcode.

*No message passed - build it.
*Close the socket

*Subtask socket descriptor
*We really do not care about

*— these, but for the sake of it.

*Just wait for another client

Terminate subtask.

* ok ok F * *

GETOUT EQU *
EZASMI TYPE=TERMAPI

*Terminate socket API

TPITRC 'TPISERV is shutting down',

W=TPISECB *Trace the ECB

TERM RC=0 *No reason for anything else

LTORG
TRHEX DC C'0123456789ABCDEF' *Hex translate table
*
*
* CAF Call Attachment Facility interface parameters
*
*
CAFFUNC DC crLiz2' ' *CAF Function code
CAFSSNM DC CL4' ' *DB2 subsystem name
CAFPLAN DC CL8' ' *DB2 Plan name

CAFRC DC A(0)
CAFREAS DC A(0)

*CAF Return code
*CAF Reason code
*CAF Termination option

CAFTERMO DC CL4'SYNC'
*

*

* Initapi call parameters
*

*

IAPISOCC DC AL2(10)
IAPIIDEN DS oc

IAPITCP DC CL8' '
IAPIAS DC CL8' '

*Max socc

*TCP/IP Address space name
*My address space name

A Beginner's Guide to MVS TCP/IP Socket Programming

* ok ok F * * *

* F * * *

* F * * *

* F * * *

Q

e eleNe!

Q0

296

A Beginner's Guide to MVS TCP/IP Socket Programming

IAPISNO DC AL4 (10) *Max sno
IAPITYPE DC AL2 (2) *Api type
*
*
* Getpeername call parameters
*
*
PEERNAME DS oc *Returned socket address structure
PEERFAM DC AL2(0) *Addressing family
PEERPORT DC AL2(0) *Port number
PEERIP DC AL4 (0) *TP address
DC 8X'00" *Reserved

*
*
* TPIRECV and TPISEND Communication fields
*
*

REQLEN DC A(0) *Requested receive/send length
ACTLEN DC A (0) *Actually received/sent length
RECVFLAG DC A(0) *RECV flags
RECVREAD EQU 0 *Read data
RECVPEEK EQU 2 *Peek at data
SENDFLAG DC A(0) *SEND flags
SENDDATA EQU 0 *Send data
*
*
* Socket call error status information
*
*
TRCMLFUN DC CL8' ' *Socket function for errorlog
ERRNO DC A(0) *Socket error code
RETCODE DC A(0) *Socket return code
MSGCODE DC AL2(0) *Message code to be returned
*
*
* Table over valid record id's and length of records
*
*
RECIDBXL DC A (RECIDST, 3, RECIDSL-3)
RECIDST EQU * *Record id and lenght table
DC Cc'l',AL2(230) *Add new record
DC X'31',AL2(230) *Add new record ASCII 1
DC Cc'2',AL2(230) *Update existing record
DC X'32',AL2(230) *Update existing record ASCII 2
DC C'3',AL2 (24) *Query existing record
DC X'33',AL2(24) *Query existing record ASCII 3
DC C'4',6AL2(24) *Delete existing record
DC X'34',AL2(24) *Delete existing record ASCII 4
DC C'A',AL2(230) *Query response with data
DC C'a',AL2(230) *Query response with data
DC X'41',AL2(230) *Query response with data ASCII A
DC X'61l',AL2(230) *Query response with data ASCII a
DC C'B',AL2(89) *Response with text
DC C'b',AL2(89) *Response with text
DC X'42',AL2(89) *Response with text ASCII B
DC X'62',AL2(89) *Response with text ASCII b
RECIDSL EQU *
*
*
* EZA Task level work area and buffer with control fields
*
*

A Beginner's Guide to MVS TCP/IP Socket Programming

* F * * *

* * * * *

* F * * *

* F * * *

* * * * *

297

A Beginner's Guide to MVS TCP/IP Socket Programming

PRINT GEN
EZATASK EZASMI TYPE=TASK, *Task EZA Work area Cc
STORAGE=CSECT
BUFFER DC XL255'00"' *Enough for our purpose
READLN DC A (0) *So many bytes were read
BUFLEN DC A (*-BUFFER) *L'BUFFER
RECLEN DC A(0) *L'current input record
* *
* *
* Logging line for client id *
* *
* *
DORD DC D'0’ *Work field for unpack
CLNLOGLN DC oCcLso' '
DC C'TPISERV Client ID '
DC C'Family="
CLNLOGAF DC CL4' ',CLl' ' *Addressing Family
DC C'Address Space='
CLNLOGAS DC cLg' ',CcL1' ' *Address Space Name
DC C'Subtask="
CLNLOGST DC CL8' ' *Subtask Name
DC CL (80— (*~CLNLOGLN)) ' '
* *
* *
* Logging line for peer socket address *
* *
* *
PERLOGLN DC 0CcL8o' '
DC C'Peer socket address - '
DC C'Family="
PERLOGAF DC CL4' ',CLl' ' *Addressing Family
DC C'Port number='
PERLOGPO DC CL5' ',CLl1' ' *Port number
DC C'IP address='
PERLOGIP DC CL15' ' *IP address
DC CL (80- (*~PERLOGLN)) ' '
* *
* *
* Table with possible error codes and messages, that can be *
* returned to the client in a response message. *
* *
* *
MSGBXLE DC A (MSGST, 84, MSGSL-84)
MSGST EQU *
DC CL4'0000',CL80'Processing completed successfully'
DC CL4'0001',CL80'No DB2 record exists for specified IP addC
ress'
DC CL4'0002',CL80'DB2 record not added, specified IP addresC
s already exists'
DC CL4'0003',CL80'Invalid record id received from client'
DC CL4'0004',CL80'Invalid Function code in request'
DC CL4'0005',CL80'Invalid IP address - syntax error'
DC CL4'0006',CL80'SQL error message'
DC CL4'0007',CL80'No Server is currently available - try agC

ain later'
MSGSL EQU *

WTORREPL DC CcL2' '
WTORECB DC F'0'
END

H.1.4 TPISERVD Concurrent Server DB2 Access

A Beginner's Guide to MVS TCP/IP Socket Programming 298

A Beginner's Guide to MVS TCP/IP Socket Programming

khkkhkhkkhkkkhkhkhkkhhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkkhhkk

Name: TPISERVD

Function: This module processes the transactions received from
a TPI client.
The module is called from TPISERV when an input buffer
has been received.

Interface: Rl —-> parameter list with three pointers:
+0 -> TPISCB TPI Server task Control Block.
+4 -> Buffer holding input record and in which
output record will be built.
+8 —> Fullword with lenght of input record.

Logic: The input record is analyzed for a function code,
that identifies which processing is required by this
module.

Four basic functions are supported:

A: Add a row to DB2. The passed buffer contains all
data required to build the SQL variables to be
inserted into DB2.

U: Update a row in DB2. The passed buffer contains all
data of all columns in the row. All columns are
updated.

D: Delete a row in DB2. The passed buffer contains
the primary key: The IP address.

Q: Query a row in DB2. The passed buffer contains the
primary key: The IP address. An output buffer will
be constructed with data from all columns in the
row.

The following response codes can be returned from this
module in a response record to the client:

0000 Successfull processing. If it was a query the
rest of the record holds the fetched data.

0001 Requested row does not exist

0002 Record not added - IP address already defined

0003 (Not returned by TPISERVD, but by TPISERV)

0004 Invalid function code in input record

0005 Invalid IP address - syntax error

0006 Undefined SQL error - SQLCode and first line
of DSNTIAR message is returned

Abends: - none -

Returncode: - none -

Written: May 28'th 1994 at ITSO Raleigh
Modified:

L R S SRR R I S SR R R RN N N SR R N N S I I SRR R R N R N

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

hkhkkkhkkkhkhkhkkhkhkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkkkkkx

PRINT GEN
TPISCB TPISCB TYPE=DSECT *Server task Control Block dsect
TPIMCB TPIMCB TYPE=DSECT *Main task Control Block dsect

PUSH PRINT
EXEC SQL INCLUDE TPIREC
POP PRINT

A Beginner's Guide to MVS TCP/IP Socket Programming

299

A Beginner's Guide to MVS TCP/IP Socket Programming

TPIREC TPIREC TYPE=DSECT
*

*TPI input and output record dsect

TPISERVD INIT 'TPI Server database access module',K MODE=24, RENT=NO, (o}
BASE=(12,11)
* *
* *
* Establish addressability to both Server task and Main task *
* Control Blocks. *
* *
* Pick up pointer to input buffer. Data is in EBCDIC at this point *
* in time. *
* *
* Acquire storege for SQL work area. *
* *
* *
L R10,0(R1) *—> Server task Control Block
USING TPISCB,R10
L R9, TPISMCB *—> Main task Control Block
USING TPIMCB, R9
L R8, 4 (R1) *—> Buffer holding input record
USING TPIREC, RS8
TPITRC TYPE=INIT, *Enable trace points
TRACE=YES,
MOD=TPISERVD *Tracing module is TPISERVD
L R7,SQLDSIZ *Length of SQL work area
STORAGE OBTAIN, *Getmain SQL
LENGTH= (R7), *— Work area C
LOC=BELOW
LR R7,R1 *—> SQL work area
USING SQLDSECT, R7
* *
* *
* IP address is presented to the user as max 15 character text *
* string in dotted decimal notation. The key in DB2 is a *
* fullword in network byte order. *
* Module TPIIADDR will convert from dotted decimal format to *
* network byte order format. *
* *
* *

LA R2, ITPADDR
CALL TPIIADDR, ((R2),

*—> 15 char ip address

*R2 point to dotted decimal value (o]
HIPADDR) , VL *Convert to fullword

LTR R15,R15 *Was IP address OK ?

BE RECIAOK *— Yes, it translated to fullword

MVC MSGCODE, =AL2 (5) *Invalid IP address format

B WRITEMSG *Write back error message

Test for function code in received buffer and pass control to
function specific parts of this module.

* ok ok F * *
* F ok F * *

RECIAOK EQU *

CLI IRECID, IRECADD *Is it Add ?

BE ADDREC - Yes, do it.
CLI IRECID, IRECUPD *Is it Update ?
BE UPDREC - Yes, do it.
CLI IRECID, IRECQUE *Is it Query ?
BE QUEREC - Yes, do it.
CLI IRECID, IRECDEL *Is it Delete ?
BE DELREC - Yes, do it.

MVC MSGCODE, =AL2 (4) *Invalid function requested.

A Beginner's Guide to MVS TCP/IP Socket Programming 300

A Beginner's Guide to MVS TCP/IP Socket Programming

B WRITEMSG

*Return status message

an SQL code = -803.

* ok ok ok ok F * *

Add a row to DB2 - key is IP address in network byte order.
There is a unique index over the IP address column, so an
attempt to insert an IP address,

that already exists will give

ADDREC EQU *

EXEC SQL INSERT INTO TPIDATA

VALUES (
:HIPADDR,
: THOSTNM,
: IADDNM,
: TROOM,
: IOWNER,
: TOWNERPH,
: IEQUIP,
: IOPERSYS,
: ITEXT)
MVC MSGCODE, =AL2 (0)
CLC SQLCODE, =A(0)
BE WRITEMSG
B BADSQL

*Anticipate record was added.
*Was insert succesfull?

*— Yes, OK response is set
*Else send back SQL message

bother with cursors.

* ok ok ok ok ok Ok Ok F O *

Select a row from DB2. As we only select on a unique key,
the select can only return a single row, so we do not need to

If the select was successfull, the fetched IP address os
converted from fullword format to dotted decimal format by
module TPIINTOA, and a complete output buffer is built.

QUEREC EQU *
EXEC SQL SELECT * INTO
:HIPADDR,
: THOSTNM,
: IADDNM,
: TROOM,
: IOWNER,
: TOWNERPH,
: IEQUIP,
: TOPERSYS,
: ITEXT
FROM TPIDATA

WHERE IPADDR = :HIPADDR

CLC SQLCODE, =A(0)

BNE BADSQL

LA R2, IIPADDR

CALL TPIINTOA, (HIPADDR,
(R2)),VL

MVC ICODE,=CL4'0000'

MVI IRECID, IQRESP

B RETURN

*Was Query succesfull?

*— No, send back SQL message
*Character IP address
*Fullword format

*— Convert to string

*OK Message number

*Query response

*Everything OK for return

* F * * *

Update a row in DB2. For reasons of simplicty, we expect that
the input record contains values for all columns in the row, that
is updated. A client would first issue a query to get the current

A Beginner's Guide to MVS TCP/IP Socket Programming

* % ok ok ok F * *

* ok ok ok ok Ok Ok Ok F * *

* * * * *

o000

oo NN NN NN Ne!

301

A Beginner's Guide to MVS TCP/IP Socket Programming

contents of the row — make the required modifications and return
the full record in an update request.

UPDREC EQU

*

EXEC SQL UPDATE TPIDATA

SET
IPADDR = :HIPADDR,
HOSTNM = :IHOSTNM,

ADDNM = :IADDNM,
ROOM = :IROOM,
OWNER = :IOWNER,

OWNERPH = :IOWNERPH,

EQUIP = :IEQUIP,

OPERSYS = :IOPERSYS,

TEXT = :ITEXT

WHERE IPADDR = :HIPADDR
CLC SQLCODE, =A (0) *Was update succesfull?
BNE BADSQL *— No, send SQL message
MvVC MSGCODE, =AL2 (0) *OK, Record was updated
B WRITEMSG *Write back OK message

* F * * *

Delete a row in DB2.

DELREC EQU

*

EXEC SQL DELETE FROM TPIDATA
WHERE IPADDR = :HIPADDR

CLC SQLCODE, =A (0) *Was delete succesfull?
BNE BADSQL *— No, send SQL message
MvVC MSGCODE, =AL2 (0) *OK Record was deleted
B WRITEMSG *Send OK message back

output record, before it is sent.

* ok ok ok * * *

Build response header with response record id and code
TPISERV will find a message based in the code and put that into

WRITEMSG EQU *
LH R2,MSGCODE
CVvD R2,DORD
oI DORD+7, X' OF'
UNPK ICODE, DORD
MVI IRECID, IRESP
B RETURN

*This message code to return
*We like character data..

*Reads nice and clear
*Number into buffer

* * * * *

* % ok F * * *

*This is response message record id

*Return to TPISERV

If SQLcode <> 0, we come here.

* ok ok ok ok ok ok Ok 2k Ok Ok F F * *

SQLCode = 100 is OK and means: Row not found - we return a
response code 0001 to the client.
SQLCode = -803 is also OK and means:
address, that already existed - we return a
response code 0002 to the client.

Other SQLCodes are handed over to DSNTIAR for translation into
some text. The full DSNTIAR Message is logged on the log file,
the SQL Code and the first 75 bytes of the DSNTIAR message buffer
are returned to the client as message text.

A Beginner's Guide to MVS TCP/IP Socket Programming

You tried to insert an IP

* ok ok ok ok ok ok Ok 2k Ok Ok Ok F * *

oo NN NN NN Ne!

302

A Beginner's Guide to MVS TCP/IP Socket Programming

BADSQL EQU *

CLC SQLCODE, =F'100"' *Record not found?

BE SQLNOFND *— Yes, we take care of this one

CLC SQLCODE, =F'-803" *Duplicate record ID?

BNE SQLERR *— No.

MVC MSGCODE, =AL2 (2) *This one we handle

B WRITEMSG *Treat as normal response
SQLNOFND EQU *

MVC MSGCODE, =AL2 (1) *We handle this one

B WRITEMSG *Treat as normal response

SQLERR EQU *
TPITRC 'Bad SQL Return Code',

W=SQLCODE *Trace the SQLCode
CALL DSNTIAR, (SQLCA, *SQL Communications Area
DSNTIARA, *DSNTIAR Return area
DSNTIARP) ,VL *L'DSNTIAR output lines
LA R3,DSNTIARA+2 *First line
L R4 ,DSNTIARP *L'each line
LR R5,R3
AH R5,DSNTIARA *First byte after area
S R5, DSNTIARP *—> Last possible line
BADSQLLP EQU *
CLC 0(80,R3),=CL80" ' *Empty line=>no more
BE BADSQLNM *We are done
TPILOG MOD=TPISERV, *Log the full
MSGNO=1, *— DSNTIAR Message buffer
TEXT= (R3) *— on the log file
BXLE R3,R4,BADSQLLP *Put them out all
BADSQLNM EQU *
MVC IMESSAGE, =CL80"' ' *Clear message area
MVC ICODE,=CL4'0006' *SQL Error
MVI IRECID, IRESP *Response record
L R2, SQLCODE *This was the SQLCode
LTR R2,R2 *Was it negative?
BP BADSQLPO *— No, it is positive
LPR R2,R2 *Ensure it is positive
MVI IMESSAGE,C'-' *Show it was negative

BADSQLPO EQU *
CVD R2, DORD
oI DORD+7,X'OF"'
UNPK IMESSAGE+1(3),DORD *Put it into message
MVC IMESSAGE+5 (75) ,DSNTIARA+2 *First 75 bytes from DSNTIAR

Return to TPISERV, Output buffer has been built.

* ok * * *

RETURN EQU *

TERM RC=0

LTORG
*
*
* IP address transformation work areas and message code information
*
*
HIPADDR DC F'0’ *Hexadecimal IP Address
HIPADDRT DC CL15"' ' *Character IP address
MSGCODE DC H'O' *Return message code
DORD DC D'0’

*

*

A Beginner's Guide to MVS TCP/IP Socket Programming

*

* * * * *

* F * * *

303

A Beginner's Guide to MVS TCP/IP Socket Programming

* SQL communications area and DSNTIAR message buffer *

*
*

EXEC SQL INCLUDE SQLCA

DSNTIARP DC
DSNTIARA DS
DSNTIARL DC
DC
END

A(8
oc

0)

AL2 (8*80)

8CL80'

H.1.5 TPISEND Send Data Over a Stream Socket

khkkhkhkkhkhkhkkhkhkhkkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkkhhkkk

Name:

Function:

Interface:

Logic:

Abends:

Returncode:

Written:

ok ok ok ok ok ok ok Ok ok Ok Ok ok ok Ok ok ok ok ok ok ok Ok ok ok ok ok Ok Ok ok F * *

Modified:
*

TPISEND

Issue SEND socket calls to send a specified
number of bytes.

Rl —-> parameter list with the following pointers:

+0
+4
+8
+C
+10
+14
+18
+1C
+20

This module is to send data from a buffer

to a socket.

The routine will repeat the send operation until
either the requested length has been sent or send
returns a length of zero (peer closed socket)

— none -

RC =
RC
RC

June

->
->
->
->
->
->
->
->
->

0
4
8

18'th 1994 at ITSO Raleigh

EZA Global work area (In)

EZA Task work area (In)

Halfword woth socket descriptor (In)
Buffer (In)

Fullword with requested length (In)
Fullword for actual length (Out)
Fullword with SEND flags (In)
Fullword for SEND Retcode (Out)
Fullword for SEND Error code (Out)

Everything OK
Peer closed the socket
Examine Retcode and Errorcode for details

L I R SR R R N N R SR R N N I SRR R R R

khkkhkhkkhkhkkkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkkhhkkk

PARMS DSECT

PEZAGLOB DC
PEZATASK DC
PSD DC
PBUFFER DC
PREQLEN DC
PACTLEN DC
PSENDFLG DC
PRETCODE DC

PERRNO DC
*

PRINT NOGEN
EZAGLOB EZASMI TYPE=GLOBAL,

A (0
A (0
A (0
A (0
A (0
A (0
A (0
A (0
A (0

)
)
)
)
)
)
)
)
)

*—> EZA Global workarea

*—> EZA Task workarea

*—> Socket descriptor

*—> Send buffer

*—> Word with requested length
*—> Word to return actual length
*—> Word with SEND flags

*—> Retcode to return

*—> Error no to return

*EZA Global workarea

STORAGE=DSECT

A Beginner's Guide to MVS TCP/IP Socket Programming

304

A Beginner's Guide to MVS TCP/IP Socket Programming

EZATASK EZASMI TYPE=TASK,

*
TPISEND INIT

LR
USING
L
MvVC
L
MvVC
MvVC
L
ST
L
MvVC
L
USING
L
USING
XC
XC
XC
XC

*

DOSEND EQU
L

STORAGE=DSECT

*EZA Task workarea

'TPI Send data over a socket',6K RENT=NO,

BASE=(12) ,MODE=24

R10,R1

PARMS, R10
R2,PSD
SD, 0 (R2)

R2, PREQLEN
REQLEN, 0 (R2)
REMLEN, 0 (R2)
R2, PBUFFER

R2, BUFNEXT

R2, PSENDFLG
SENDFLAG, 0 (R2)
R8, PEZAGLOB
EZAGLOB, R8

R9, PEZATASK
EZATASK, R9

RC, RC
RETCODE , RETCODE
ERRNO, ERRNO
ACTLEN, ACTLEN

*
R2, BUFNEXT

EZASMI TYPE=SEND,

ICM

ICM
BNZ

*

SDCLOSED EQU
MVC

EZAERROR EQU
MvVC

MvVC

MvVC
RETURN EQU

MvVC

S=sD,
NBYTE=REMLEN,
BUF= (R2),
FLAGS=SENDFLAG,
ERRNO=ERRNO,
RETCODE=RETCODE
R15,15, RETCODE
EZAERROR
SDCLOSED
R15,ACTLEN
R15,ACTLEN

R15, REMLEN

R15, RETCODE
R15, REMLEN

R2, BUFNEXT

R2, RETCODE
R15, 15, REMLEN
DOSEND

RETURN

*

RC,=A(4)
RETURN

*

RC, =A(8)
R2, PRETCODE

*So we wont destroy it
*Here we have them all
*—> Socket descriptor
*Now we have it

*—> Requested length
*Now we have it

*Remaining length := requested len.

*—> Buffer

*Here to fetch first byte
*—> Send flags

*Copy to us self

*—> EZA Global workarea
*Addressability

*—> EZA Task workarea
*Adressability

*RC = 0
*RETCODE =
*ERRNO = 0
*ACTLEN = 0

0

*—> Here to fetch data

*Send call

*From this socket descriptor
*Request remaining length
*—> Read data into buffer
*Send flags

*Put error here
*Retcode/length here

*Let us have a look

* < 0 Something seriously wrong

* = 0 Means peer closed socket
*Add to actual until now
*Update it

*Original remaining length
*Minus what we got now
*New remaining length
*Here we started to fetch
*Tf more, fetch from here
*Is there more to send ?
*— Yes, do a new send

*— No, we have sent all

*Set RC=4 for socket closed
*And return current status

*Set RC=8 for EZA error codes
*—> Callers RETCODE

0 (L'RETCODE, R2) ,RETCODE *Return RETCODE to Caller

R2, PERRNO

*—> Callers ERRNO

0 (L'ERRNO, R2) ,ERRNO *Return ERRNO to Caller

*
R2,PACTLEN

*—> Callers ACTLEN

0 (L'ACTLEN, R2) ,ACTLEN *Return actual length

R15,RC

*Return code

A Beginner's Guide to MVS TCP/IP Socket Programming

ool e e o NeQ]

305

TERM RC=R15

LTORG
*

SD DC
REQLEN DC
ACTLEN DC
REMLEN DC

BUFNEXT DC
SENDFLAG DC
RETCODE DC
ERRNO DC
RC DC
*

END

AL2 (0)

A (0
A (0
A (0
A (0
A (0
A (0
A (0
A (0

A Beginner's Guide to MVS TCP/IP Socket Programming

)
)
)
)
)
)
)
)

*Socket descriptor
*Requested length

*Sent so far

*Remaining length

*—> Where to fetch next byte
*Send flags

*EZASMI Returncode

*EZASMI Error code

*TPISEND Return code

H.1.6 TPIRECY Receive Data Over a Stream Socket

khkkhkhkkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhhkk

Name:

Function:

Interface:

Logic:

Abends:

Returncode:

Written:

ok ok ok ok ok ok ok ok ok Ok Ok ok Ok Ok Ok ok ok ok ok ok ok ok ok ok ok ok Ok ok F F *

Modified:
*

TPIRECV

Issue RECV socket calls to receive a specified
number of bytes.

Rl —-> parameter list with the following pointers:

+0
+4
+8
+C
+10
+14
+18
+1C
+20

This module is to read data from a socket into a
program buffer.

The routine will repeat the RECV operation until
either the requested length has been read or RECV
returns a length of zero (peer closed socket)

— none -

RC =
RC
RC

June

->
->
->
->
->
->
->
->
->

0
4
8

18'th 1994 at ITSO Raleigh

EZA Global work area (In)

EZA Task work area (In)

Halfword woth socket descriptor (In)
Buffer (Out)

Fullword with requested length (In)
Fullword for actual length (Out)
Fullword with RECV flags (In)
Fullword for RECV Retcode (Out)
Fullword for RECV Error code (Out)

Everything OK
Peer closed the socket
Examine Retcode and Errorcode for details

L I R SR R R R SR R N N N SRR R R R

khkkhkhkkhkhkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkkhhkk

PARMS DSECT
PEZAGLOB DC
PEZATASK DC
PSD DC
PBUFFER DC
PREQLEN DC
PACTLEN DC
PRECVFLG DC
PRETCODE DC

A (0
A (0
A (0
A (0
A (0
A (0
A (0
A (0

)
)
)
)
)
)
)
)

*—> EZA Global workarea

*—> EZA Task workarea

*—> Socket descriptor

*—> Read buffer

*—> Word with requested length
*—> Word to return actual length
*—> Word with RECV flags

*—> Retcode to return

A Beginner's Guide to MVS TCP/IP Socket Programming

306

PERRNO DC

PRINT

A Beginner's Guide to MVS TCP/IP Socket Programming

A(0)

NOGEN

EZAGLOB EZASMI TYPE=GLOBAL,

STORAGE=DSECT

EZATASK EZASMI TYPE=TASK,

*
TPIRECV INIT

LR
USING
L

MvVC

L

MvVC
MvVC

L

ST

L

MvVC

L
USING
L
USING
XC

XC

XC

XC

DORECV EQU
L

STORAGE=DSECT

*—> Error no to return

*EZA Global workarea

*EZA Task workarea

'TPI Receive data over a socket',6 RENT=NO,

BASE=(12) ,MODE=24

R10,R1

PARMS, R10
R2,PSD
SD, 0 (R2)

R2, PREQLEN
REQLEN, 0 (R2)
REMLEN, 0 (R2)
R2, PBUFFER

R2, BUFNEXT

R2, PRECVFLG
RECVFLAG, 0 (R2)
R8, PEZAGLOB
EZAGLOB, R8

R9, PEZATASK
EZATASK, R9

RC, RC
RETCODE , RETCODE
ERRNO, ERRNO
ACTLEN, ACTLEN

*
R2, BUFNEXT

EZASMI TYPE=RECV,

ICM

ICM
BNZ

*

SDCLOSED EQU
MVC

EZAERROR EQU
MvVC

MvVC

S=SD,
NBYTE=REMLEN,
BUF= (R2),
FLAGS=RECVFLAG,
ERRNO=ERRNO,
RETCODE=RETCODE
R15,15, RETCODE
EZAERROR
SDCLOSED
R15,ACTLEN
R15,ACTLEN

R15, REMLEN

R15, RETCODE
R15, REMLEN

R2, BUFNEXT

R2, RETCODE
R15, 15, REMLEN
DORECV

RETURN

*

RC,=A(4)
RETURN

*

RC, =A(8)
R2, PRETCODE

*So we wont destroy it
*Here we have them all
*—> Socket descriptor
*Now we have it

*—> Requested length
*Now we have it

*Remaining length := requested len.

*—> Buffer

*Here to store first byte
*—> Receive flags

*Copy to us self

*—> EZA Global workarea
*Addressability

*—> EZA Task workarea
*Adressability

*RC = 0
*RETCODE =
*ERRNO = 0
*ACTLEN = 0

0

*—> Here to store data
*Receive call

*From this socket descriptor
*Request remaining length
*—> Read data into buffer
*Receive falgs

*Put error here
*Retcode/length here

*Let us have a look

* < 0 Something seriously wrong

* = 0 Means peer closed socket
*Add to actual until now
*Update it

*Original remaining length
*Minus what we got now

*New remaining length

*Here we started to store
*If more, it goes here

*Is there more to receive ?
*— Yes, do a new receive

*— No, we have it.

*Set RC=4 for socket closed
*And return current status

*Set RC=8 for EZA error codes
*—> Callers RETCODE

0 (L'RETCODE, R2) ,RETCODE *Return RETCODE to Caller

R2, PERRNO

*—> Callers ERRNO

A Beginner's Guide to MVS TCP/IP Socket Programming

ool e e o NNe]

307

MvVC
RETURN EQU

MvVC

TERM

LTORG
*
SD DC
REQLEN DC
ACTLEN DC
REMLEN DC
BUFNEXT DC
RECVFLAG DC

RETCODE DC
ERRNO DC
RC DC
*

END

A Beginner's Guide to MVS TCP/IP Socket Programming

0 (L'ERRNO, R2) ,ERRNO *Return ERRNO to Caller
*

R2,PACTLEN *—> Callers ACTLEN

0 (L'ACTLEN, R2) ,ACTLEN *Return actual length
R15,RC *Return code

RC=R15

AL2 (0) *Socket descriptor

A(0) *Requested length

A(0) *Read so far

A(0) *Remaining length

A(0) *—> Where to store next byte
A(0) *Receive flags

A(0) *EZASMI Returncode

A (0) *EZASMI Error code

A(0) *TPIRECV Return code

H.1.7 TPIMCB Macro Main Task Control Block

MACRO
&NAME TPIMCB &TYPE=DSECT
PUSH PRINT
PRINT GEN
ATF ('&TYPE' EQ 'DSECT') .DSEC
&NAME DS OF
AGO .HDOK
.DSEC ANOP
&NAME DSECT
.HDOK ANOP
khkkkkkkhkkkkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkkkhkkkhkkkkkhkkkhkkkhkkkhkkkhkkkhkkkkkkkkkkkkkkx
* *
* TPI Main Control Block (TPIMCB). *
* *
khkkkkkkkkkkhkkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkkkkkhkkkkkkkhkkkhkkkhkkkhkkkkkhkkkhkkhkkkkhkkkkkkkkkkkkkk
TPIMEYE DC CL8'TPIMCB' *Eyecatcher
TPIMGLOB DC A(0) *—> EZA Global workarea
TPIMDB2 DC CL4' ' *DB2 Subsystem name to use
TPIMTCPI DC CL8' ' *TCPIP Address space name
TPIMPORT DC AL2(0) *Listen port number
TPIMNOST DC AL2 (0) *Number of server subtasks
TPIMMAXS DC AL2(0) *Maximum number of sockets
DC AL2 (0) *Reserved
TPIMMAXD DC AL4 (0) *Maximum descriptor number
TPIMTCBE DC CL8' ' *TCB Address in EBCDIC
TPIMSCBB DC 3A(0) *TPISCB Table BXLE addresses
TPIMSOTB DC 3A(0) *TPIMSO Table BXLE addresses
TPIMSOCK DC A(0) *Listen socket number
TPIMREIN DC A(0) *Times server reinstated
TPIMECBP DC A(0) *—> Main Wait ECBList
TPIMFECB DC A(0) *Modify ECB
TPIMECBS DC A(0) *Select ECB
TPIMCLNI DS ocC *Main task client id
TPIMCDOM DC A(0) *Domain: AF-INET
TPIMCNAM DC CL8' ' *Our address space name
TPIMCTSK DC CL8' ' *Our task id
DC 20x'00" *Reserved (part of clientid)
TPIMLONM DC CL8'TPI' *TPI Log writer Qname
TPIMLRNM DC CL8'TPILOGWT' *TPI Log writer Rname

A Beginner's Guide to MVS TCP/IP Socket Programming

308

A Beginner's Guide to MVS TCP/IP Socket Programming

TPIMLDON DC A(0) *ECB for LOGWT to post, when done.
TPIMLECB DC A(0) *Log task wait-for-work ECB
TPIMLTCB DC A(0) *Log task TCB address

TPIMLMOD DC CL8' ' *Module requesting log

TPIMLFUN DC CL8' ' *EZASMI Function for log

TPIMLERR DC A (0) *EZASMI Error Number to be logged
TPIMLRET DC A (0) *EZASMI Return code to be logged
TPIMLMNO DC A(0) *Message number to be logged
TPIMLTXT DC CL80' ' *Free message text to be logged

*

TPIMCBLN EQU *—&NAME
POP PRINT
MEND

H.1.8 TPISCB Macro Subtask Control Block

MACRO
&NAME TPISCB &TYPE=DSECT

AIF ('&TYPE' EQ 'DSECT') .DSEC
&NAME DS OoF

AGO .HDOK

.DSEC ANOP
&NAME DSECT
.HDOK ANOP
kAhkkkkkkkkkkkkkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkkkhkkkkkhkkkhkkkhkkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkkkkk
* *
* TPI Server Control Block (TPISCB). *
* *
khkkkkkkkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkkkhkkkhkkkhkkkhkkkhkkkhkkkkkhkkkhkkkhkkkkkkkkkkkkkk
TPISEYE DC CL8'TPISCB' *Eyecatcher
TPISTASK DC A(0) *—> EZA Task workarea
TPISMCB DC A(0) *—> TPIMCB
TPISTCB DC A(0) *—> Subtask TCB
TPISTCBE DC CL8' ' *Subtask TCB address in EBCDIC
TPISECB DC A(0) *Subtask wait-for-work ECB
TPISTECB DC A(0) *Subtask termination ECB
TPISIECB DC A(0) *Subtask initialization ECB
TPISSOD DC AL2(0) *Parent socket descr. no.
TPISNSOD DC AL2(0) *Subtask socket descr. no.
TPISCLNI DS oc *Server task client id
TPISCDOM DC A (0) *Adressing Family
TPISCNAM DC CL8' ' *Address space name
TPISCTSK DC CL8' ' *Subtask name

DC 20X'00' *Reserver - part of clientid
TPISCTYP DC X'00' *Current Client option
TPISASCI EQU BITO *— Client is ASCII based
TPISEBCD EQU BIT1 *— Client is EBCDIC based

DC XL3'00' *Reserved

*

TPISCBLN EQU *—&NAME
MEND

H.1.9 TPILOG Macro Issue Logwriter Request

MACRO

TPILOG &MOD=TPIMAIN,
&FUNC=,
&ERRNO=,
&RETCODE=,

oo eNe!

A Beginner's Guide to MVS TCP/IP Socket Programming 309

GBLB
AIF
B
MSEC200 DC
MSEC500 DC
TPILOGR2 DC
TPILOGEQ EQU
LA
LA
ENQ
BR
TPILOGDQ EQU
LA
LA
DEQ
BR

A Beginner's Guide to MVS TCP/IP Socket Programming

&MSGNO=0,

&TEXT='No text'
&TPILOGSW
(§TPILOGSW) .NOTFRST
TPIA&SYSNDX.

F'20'

F'50'

A (0)

*

R14, TPIMLONM

R15, TPIMLRNM

((R14), (R15),E, 8, STEP)
R2

*

R14, TPIMLONM

R15, TPIMLRNM

((R14), (R15),8, STEP)
R2

&TPILOGSW SETB 1
TPIA&SYSNDX. EQU *

.NOTFRST ANOP

ST R2, TPILOGR2 *Save work register
BAL R2, TPILOGEQ *Do enqueue
T™ TPIMLECB, BITO *Is he waiting
BO TPIL&SYSNDX.
STIMER WAIT, BINTVL=MSEC500
T™ TPIMLECB, BITO *Is he waiting
BO TPIO&SYSNDX. *Drop it..
TPIL&SYSNDX. EQU *
MVC TPIMLMOD, =CL8'&MOD. '
AIF (T'&FUNC EQ 'O') .NOFUNC
AIF ('&FUNC' (1,1) EQ '''') .FUNSTR
MVC TPIMLFUN, &FUNC.
AGO .NOFUNC
.FUNSTR ANOP
MVC TPIMLFUN, =CL8&FUNC.
.NOFUNC ANOP
XC TPIMLERR, TPIMLERR
AIF (T'&ERRNO EQ 'O') .NOERRNO
MVC TPIMLERR, &ERRNO
.NOERRNO ANOP
XC TPIMLRET, TPIMLRET
AIF (T'&RETCODE EQ 'O') .NORETC
MVC TPIMLRET, &RETCODE
.NORETC ANOP
LA R15, éMSGNO
ST R15, TPIMLMNO
AIF (T'&TEXT EQ 'O') .NOTEXT
MVI TPIMLTXT,C' '
MVC TPIMLTXT+1 (L' TPIMLTXT-1) , TPIMLTXT
AIF ('&TEXT' (1,1) EQ '''') .TEXTSTR
AIF ('&TEXT' (1,1) EQ '(') .REGADR
MVC TPIMLTXT (L' &TEXT) , &TEXT.
AGO .NOTEXT
.REGADR ANOP
MVC TPIMLTXT, 0&TEXT.
AGO .NOTEXT

. TEXTSTR ANOP

LCLA &NBYTES
&NBYTES SETA K'&TEXT
&NBYTES SETA &NBYTES-2

MvVC

TPIMLTXT (&NBYTES.) , =C&TEXT.

A Beginner's Guide to MVS TCP/IP Socket Programming

c

310

.NOTEXT ANOP

A Beginner's Guide to MVS TCP/IP Socket Programming

XC TPIMLDON, TPIMLDON

POST TPIMLECBE, 0 *Wake him up

WAIT ECB=TPIMLDON *Wait for him to do it
TPIO&SYSNDX. EQU *

BAL R2, TPILOGDQ *Do dequeue

L R2, TPILOGR2 *Restore work register

MEND

H.1.10 TPITRCM

acro Issue Trace Request

MACRO
TPITRC &TXT, sREG=, &WORD=, &§H=, &W=, §MOD=, C

&TYPE=TRACE, §&TRACE=YES

GBLB &TRCSW
GBLB &TPITRC
GBLC &TPITRCM

AIF

TPITRCTX DS
TPITRCHX DC
TPITRCT DC
TRCHEX DC
TRCDWORD DC
DS
TRCA&SYSNDX.
&TRCSW SETB
&TPITRC SETB

(&TRCSW) . NOTFRST
TRCA&SYSNDX.
0CL80
CL8' ',cLl' '
cL71'
C'0123456789ABCDEF '
D'0'
OF

EQU *

1

1

.NOTFRST ANOP

AIF
MEX
.TRON ANOP
AIF
AIF
&TPITRC SETB
MEX
. TRYES ANOP
&TPITRCM SET
MEX
.DOTRCE ANOP
AIF
LR
AGO
.NOREG ANOP
AIF
L
AGO
.NOWORD ANOP
AIF
L
AGO
.NOW ANOP
AIF
LH
AGO
.NOH ANOP
.COMM ANOP
SR
SLD

(&TPITRC) . TRON
IT

('&TYPE' EQ 'TRACE') .DOTRCE
('&TRACE' EQ 'YES').TRYES
0
IT

C '&MOD.'
IT

(T'® EQ 'O') .NOREG
R15, ®
.coMM

(T'&WORD EQ 'O') .NOWORD
R15, §WORD
.coMM

(T'&W EQ 'O') .NOW
R15, &W
.coMM

(T'&H EQ 'O') .NOH
R15, &H
.coMM

R14,R14
L R14,4

STM R14,R15, TRCDWORD

UNP

K TPITRCHX, TRCDWORD

A Beginner's Guide to MVS TCP/IP Socket Programming

311

A Beginner's Guide to MVS TCP/IP Socket Programming

NC TPITRCHX,=8X'0F'
TR TPITRCHX, TRCHEX
AIF (T'&TXT NE 'O') .TEXTOK
MvVC TPITRCT, =CL71'Trace entry'
AGO .DOLOG
. TEXTOK ANOP
MVI TPITRCT,C' ' *Clear the text field
MvVC TPITRCT+1 (L'TPITRCT-1), TPITRCT
LCLA &NBYTES
&NBYTES SETA K'&TXT
&NBYTES SETA &NBYTES-2

MvVC TPITRCT (&NBYTES.) ,=C&TXT.

.DOLOG ANOP
TPILOG MOD=&TPITRCM.,MSGNO=1, TEXT=TPITRCTX
MEND

H.1.11 TPIMASK Macro Set and Test Bits in Select Mask

MACRO
TPIMASK &TYPE, §MASK=, &SD=
SR R14,R14 *Nullify
AIF ('&SD'(1,1) EQ '(') .SDREG
LH R15, &SD *Socket descriptor
AGO . SDOK
.SDREG ANOP
LR R15, &SD *Socket descriptor
.SDOK ANOP
D R14,=A(32) *Divide by 32
SLL R15,2 *Multiply offset with word length
AIF ('&MASK' (1,1) EQ '(') .MASKREG
LA R1, éMASK *Here mask starts

AGO .MASKOK
.MASKREG ANOP

LR R1, éMASK *Here mask starts

.MASKOK ANOP
AR R15,R1 *Here our word starts
LA R1,1 *Rightmost bit on
SLL R1,0(R14) *Shift left rest from division
o R1, 0 (R15) *Or bits from mask
ATF ('&TYPE' EQ 'SET') .DOSET
(o} R1, 0 (R15) *If equal, bit was on
MEXIT

.DOSET ANOP
ST R1, 0 (R15) *New mask
MEND

H.1.12 TPIREC Macro DB2 Row Layout

MACRO
&NAME TPIREC &TYPE=DSECT
PUSH PRINT
PRINT GEN
AIF ('&TYPE' EQ 'DSECT') .DSEC
&NAME DS OoF
AGO .HDOK
.DSEC ANOP
&NAME DSECT

.HDOK ANOP
khkkhkhkkkhhkkkhkhkhhhhhhhkhkhhhhkhhhkkkkkhkhhkhkkkkkkkhhkkkkkkkkhhkkrkkkkkkhhkhhkxx

A Beginner's Guide to MVS TCP/IP Socket Programming 312

*

* TPI Input or Output recprd

*

khkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkx

IRECID
IRECADD
IRECUPD
IRECQUE
IRECDEL
IQRESP
IRESP
IIDENT
ICODE

*
IIPADDR
IHOSTNM
IADDNM
IROOM
IOWNER
IOWNERPH
IEQUIP
IOPERSYS

ITEXT
*

IMESSAGE

IRECLEN

DC
EQU
EQU
EQU
EQU
EQU
EQU
DC

DC

DC
DC
DC
DC
DC
DC
DC
DC
DC

ORG
DC
ORG
EQU
MEND

A Beginner's Guide to MVS TCP/IP Socket Programming

CL1'0"
c'1l’

c'a2’

c'3’

c'4’

C'A’

C'B'
CL4'TPI '
CL4' '

CL15' '
cLis' '
cLis' '
CL10' '
CcL32' '
CLl6' '
CLl6' '
CLl6' '
CL80' '

ITIPADDR
CL80' '

*—&NAME .

*Record ident

*Add a record

*Update a record

*Query a record

*Delete a record

*OK Response to query Incl. data
*Response

*Fixed text (ASCII/EBCDIC)
*Return code

*TP Addr. in text

*Host name (with domorigin)
*Additional name ident
*ITSO Room number

*Owners name

*Owners phone number
*Equipment type

*Operating system
*Additional text

*Status message

H.1.13 TPIMSO Macro Socket Descriptor Table

MACRO

&NAME TPIMSO &TYPE=DSECT

&NAME DS

AIF
OF
AGO

.DSEC ANOP
&NAME DSECT
.HDOK ANOP

khkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkk

*

('&TYPE' EQ

.HDOK

'DSECT') .DSEC

* TPI Main task Socket Descriptor Table Entry (TPIMSO)

*

khkkhkhkkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkx

TPIMSEYE
TPIMSNO

TPIMSBIT
TPIMSACT
TPIMSLIS
TPIMSREA
TPIMSWRT
TPIMSEXP

TPIMSENO
TPIMSSOC
TPIMSFAM
TPIMSPOR
TPIMSADR

DC
DC
DC
EQU
EQU
EQU
EQU
EQU
DC
DC
DS
DC
DC
DC
DC

CL8'TPIMSO'
AL2 (0)
X'00"
BITO
BIT1
BIT2
BIT3
BIT4
X'00"
AL2 (0)
oc

AL2 (0)
AL2 (0)
AL4 (0)
XL8'00"

*Eye catcher

*Main task socket number
*Status bits

*This socket is in use

*This is main listen socket
*Read OK (only Listen socket)
*Write OK if TPIMSENO<>0
*Exception expected (Takesocket)
*Reserved

*Pending Error number
*Socket structure
*Addressing family

*Peer port number

*Peer IP address

*Reserved

A Beginner's Guide to MVS TCP/IP Socket Programming

313

A Beginner's Guide to MVS TCP/IP Socket Programming

TPIMSOLN EQU *—&NAME

MEND

H.2 TPI REXX Client Application

The TPI REXX client consists of a REXX program, an ISPF panel and an ISPF
message definition member.

H
H

H.2.1 TPI REXX Client

2.2 TPI REXX Client ISPF Panel Definition

H.2.1 TPI REXX Client
.2.3 TPI REXX Client ISPF Message Definitions

/* REXX */
/* */
/* */
/* Name: TPIREXXC — TPI Demo application REXX Client */
/* */
/* Function: Controls user interface for update and query of */
/* TPI data. User interface is ISPF panel. Communication*/
/* with TPI server is via REXX Socket interface. */
/* */
/* Interface: - none - */
/* */
/* Logic: This REXX controls a user dialog, where the user */
/* uses ISPF panels to interface to the TPI server. The */
/* REXX pgm. builds a transaction, which is sent to the */
/* TPI server over a socket connection, receives the */
/* response and displays it to the user. */
/* */
/* Returncode: RC = 0, processing OK */
/* Everything else is non-successful returncode from */
/* socket interface. */
/* */
/* Written: April 13, 1995 at ITSO Raleigh */
/* */
/* Modified: */
/* */
/* */
dotrace = 0 /*Controls tracing */
/*dotrace = 1 for trace */
tpiport = '9999' /*Server port number */
tpiserver = 'mvsl8' /*Server host name */
subtaskid = 'tpirexxc' /*Subtask id */
/* */
/* */
/* All socket calls are performed by subroutine DoSocket */
/* */
/* */
sockval = DoSocket ('Terminate') /*Ensure clean interface*/
/* */
/* */
/* Initialize REXX socket interface */
/* and get our own TCP/IP Client id. */
/* */
/* */

Address TSO "ALLOC FI (SYSTCPD) DA ('SYS1l.TCPPARMS (TCPDATA)') SHR"
sockval = DoSocket ('Initialize', subtaskid)

A Beginner's Guide to MVS TCP/IP Socket Programming

314

A Beginner's Guide to MVS TCP/IP Socket Programming

if sockrc <> 0 then do
say 'Initialize failed, rc='sockrc
exit (sockre)
end
sockval = DoSocket ('Getclientid')
if sockrc <> 0 then do
say 'Getclientid failed, rc='sockrc
exit (sockrce)
end
servipaddr = DoSocket ('Gethostbyname', tpiserver)
if sockrc <> 0 then do
say 'Gethostbyname failed, rc='sockrc
x=Doclean
exit (sockrce)
end
numips = words (servipaddr)
parse value servipaddr with sl s2 s3 s4 s5 s6 s7 s8 s9
do i = 1 to numips
sipaddr.i = word(servipaddr, i)

if dotrace then say 'sipaddr.'i' = 'sipaddr.i
end
sipaddr.0 = numips
if dotrace then say 'Number of IP addresses = 'sipaddr.O
/*
/*
/* Initialize REXX and ISPF variables
/*
/*

ispfloop = 0
tpiact = 'Q'
tpiip = "'

tpihost = ''
tpiaddnm = ''
tpiroom = ''
tpiowner = ''
tpiphone = '’
tpiequip = "'
tpios = "'

tpitext = "'
tpimsg = ''

/*

/*
/* Display dataentry panel, process input until user presses PF3
/*
/*

Do until ispfloop

address ispexec "Display panel (tpi)"

if re > 0 then do
ispfloop = 1
iterate

end

if tpiact = 'A' | tpiact = 'U' then do
/*

/*

/* If user wants to add or update TPI information, build a

/* TPI ADD or UPDATE transaction string.
/*

/*

recident = 'TPI '

reccode = '0000'
recipaddr = substr (tpiip,1,15)
rechostnm = substr(tpihost,1,18)

A Beginner's Guide to MVS TCP/IP Socket Programming

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

315

en
el

A Beginner's Guide to MVS TCP/IP Socket Programming

recaddnm = substr (tpiaddnm,1,18)
recroom = substr (tpiroom,1,10)
recowner = substr (tpiowner,1, 32)
recownerph = substr (tpiphone, 1, 16)
recequip = substr (tpiequip,1,16)
recopersys = substr(tpios,1,16)
rectext = substr(tpitext,1, 80)

if tpiact = 'A' then recid = 'l1'
if tpiact = 'U' then recid = '2'

record = recid| |recident | |reccode| |recipaddr| | rechostnm| | recaddnm

record = record| |recroom| | recowner| | recownerph| | recequip| | recopersys

record = record| |rectext
d
se do

/*

/*

/* If user wants to delete or query TPI information, build a

/* TPI DELETE or QUERY transaction string.
/*

/*
recident = 'TPI '

reccode = '0000'

recipaddr = substr(tpiip,1,15)

if tpiact 'Q' then recid = '3'

if tpiact = 'D' then recid = '4'

record = recid]| |recident | |reccode| |recipaddr

end
/*
/*
/* Get a socket and try to connect to the server
/*
/* If connect fails (ETIMEDOUT), we must close the socket,
/* get a new one and try to connect to the next IP address
/* in the list we received on the gethostbyname call.
/*
/*
i=1
connected = 0
do until (i > sipaddr.0 | connected)
sockdescr = DoSocket ('Socket')
if sockrc <> 0 then do
say 'Socket failed, rc='sockrc
x=Doclean
exit (sockrc)
end
name = 'AF_INET '| |tpiport||' '||sipaddr.i
sockval = DoSocket ('Connect', sockdescr, name)
if sockrc = 0 then do
connected =1
end
else do
parse value respdata with resplen response
sockval = DoSocket ('Close', sockdescr)
if sockrc <> 0 then do
say 'Close failed, rc='sockrc
x=Doclean
exit (sockre)
end
end
i=1i+1
end

if ,connected then do

A Beginner's Guide to MVS TCP/IP Socket Programming

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

316

A Beginner's Guide to MVS TCP/IP Socket Programming

say 'Connect failed, rc='sockrc
say sockval
x=Doclean
exit (sockrce)
end

/*
/*
/* Send the TPI transaction to the TPI server
/*

/*
sockval = DoSocket ('Write', sockdescr, record)
if dotrace then say 'Write returned: 'sockval
if sockrc <> 0 then do

say 'Write failed, rc='sockrc

x=Doclean

exit (sockre)
end

/*
/*
/* Read the response from the TPI Server

/*

/*
respdata = DoSocket ('Read', sockdescr)
if sockrc <> 0 then do
say 'Read failed, rc='sockrc
x=Doclean
exit (sockre)
end

/*
/*
/* Close the socket
/*

/*
parse value respdata with resplen response
sockval = DoSocket ('Close', sockdescr)
if sockrc <> 0 then do
say 'Socket Close failed, rc='sockrc
x=Doclean
exit (sockre)
end
if substr(response,1l,1) = 'A' then do

/*

/*

/* If it is a query response, the returned string is a
/* complete TPI record, which will be unpacked into the

/* corresponding REXX variables.
/*
/*

tpiip = substr(response, 10,15)
tpihost = substr(response, 25,18)
tpiaddnm = substr (response, 43,18)
tpiroom = substr (response, 61,10)
tpiowner = substr (response, 71, 32)
tpiphone substr (response, 103, 16)
tpiequip = substr(response,119,16)
tpios = substr (response, 135,16)
tpitext = substr(response, 151, 80)
end

else do

/*

/*

/* If it is non-query response, the returned string holds

A Beginner's Guide to MVS TCP/IP Socket Programming

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

317

/*
/*
/*
/*
/*
if

e
el

A Beginner's Guide to MVS TCP/IP Socket Programming

a TPI response code and optionally a return message.

Response code = 0000 means succesfull completion.

substr (response, 6,4) = '0000' then do
tpimsg = ' '

address ispexec "setmsg msg(tpi004)"
nd

se do

/*
/*
/* Response code = 0003 means no data found on a query
/* request.

/*

/* Clear out all variables.

/*

/*
tpimsg = substr (response,10,80)
tpirespc = substr(response, 6, 4)
address ispexec "setmsg msg(tpi003)"
if tpirespc = '0001' then do
address ispexec "setmsg msg(tpi005)"
tpimsg = ' '
tpihost = "'
tpiaddnm = "'
tpiroom = ''
tpiowner = ''
tpiphone = ''
tpiequip =
tpios = ''
tpitext = "'
end

/*

/*
/* Response code = 0002 means data was not added - TPI
/* data for specified IP address already existed.

/*
/*

if tpirespc = '0002' then do
address ispexec "setmsg msg(tpi006)"

tpimsg = ' '
end
end
end

end
/*
/*
/* Terminate socket interface
/*
/*
sockval = DoSocket ('Terminate')
if sockrc <> 0 then do

say 'Socket Close failed, rc='sockrc

exit (sockre)
end
Exit (0)
/*
/*

/* Doclean Procedure.

/*

A Beginner's Guide to MVS TCP/IP Socket Programming

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

318

A Beginner's Guide to MVS TCP/IP Socket Programming

/* If a socket call failed and we are about to exit this */
/* Rexx application, close the socket and terminate the */
/* socket interface. */
/* */
/* */
Doclean:
if dotrace then do
say 'Cleaning up socket descriptor = 'sockdescr
end
sockval = DoSocket ('Close', sockdescr)
sockval = DoSocket ('Terminate')
return sockres
/* */
/* */
/* DoSocket procedure. */
/* */
/* Do the actual socket call, and parse the return code. */
/* Return rest of string returned from socket call. */
/* */
/* */
DoSocket:
numargs = ARG () /*Number of passed args */
argstring = '' /*Init arg string */
if dotrace then do /*Tracepoint */
say 'DoSocket subroutine' /*Trace entry to routine*/
say ' — Number of args = 'numargs /*Trace number of args */
end /* */
do subix=1 to numargs /*Build argument string */
if dotrace then do /*Tracepoint */
say ' - arg('subix') = 'arg(subix) /*Trace each argument */
end /* */
argstring = argstring||'arg('subix')' /*for the socket call */
if subix<numargs then do /*If not last argument -*/
argstring = argstring]||',"' /*add a comma */
end /* */
end /* */
msgstat = msg() /*Save message status */
z = msg("OFF") /*Turn messages off */
interpret 'Parse value Socket ('||argstring||') with sockrc sockres'
z = msg(msgstat) /*Restore message status*/
if dotrace then do /*Tracepoint */
say ' - return code = 'sockrc /*Trace returncode */
say ' - return string = 'sockres /*Trace return string */
end /* */
return sockres /*Return socket result */

H.2.2 TPI REXX Client ISPF Panel Definition

)ATTR

Q@ type(text) intens(high) color (turq) /*hilite (reverse) */
$ type(text) intens(high) color(green) /*hilite(reverse)*/
% type(text) intens(high) color (red) /*hilite (reverse) */
+ type(text) intens(high) color (white) /*hilite (reverse)*/
1

type (text) intens(high) color (turq) /*hilite (reverse) */
type (text) intens(high) color(yellow) /*hilite (reverse)*/
type (input) intens (high) color (turq) caps(on)

-

; type (input) intens (high) color (turq) caps (off)
) body

! TCP/IP MVS Programming Interfaces
SOPTION ===>_ZCMD

A Beginner's Guide to MVS TCP/IP Socket Programming

319

A Beginner's Guide to MVS TCP/IP Socket Programming

%
$
$ Function%==>_Z+ (+ASAdd, +D$Delete, +Q$Query or+U$Update)
$
TP Host information:
$ IP address . . .%==>_TPIIP $ In dotted decimal form
$ Hostname%==>?TPIHOST $ Hostname without domain origin
$ Additional name .%==>7?TPIADDNM $ MAC address or SNA PU name
$ Room number . . .%==>?TPIROOM $ Room number xx-nnn
$ Owner name . . .%==>?TPIOWNER $
$ Owners phone no .%==>?TPIPHONE $
$ Equipment type .%==>?TPIEQUIP $
$ Operating system %$==>?TPIOS $ Operating system name and version
$ Additional text .%==>?TPITEXT
%

$
$ &TPIMSG $
$
$Enter%END$command to terminate TPI Application
$
%
) INIT

.ZVARS= ' (TPIACT)'
) PROC

Ver (&tpiact,list,A,D,Q,U,msg=tpi001)
Ver (&tpiip,nonblank,msg=tpi002)
) END

H.2.3 TPI REXX Client ISPF Message Definitions

TPIOO1 'Invalid action code ' .TYPE=ACTION

'TPIOO01E: Action code &tpiact. is invalid. You may choose '+
'between A for Add, U for Update, D for Delete or Q for Query.' +
'Use a Query before you do an Update.'

TPIO0O02 'IP address is required ' .TYPE=ACTION

'TPIO02E: You must type in an IP address for all request types.'
TPIOO03 'Error response received ' .TYPE=WARNING

'TPIO03E: Server returned a negative response with code=&tpirespc.'
TPIO004 'Processing successfull ' .TYPE=WARNING

'TPI004I: Request processed successfully.'

TPIOO05 'No record found ' .TYPE=ACTION

'TPIO0S5E: No DB2 record exists for specified IP address.'

TPIO006 'Duplicate IP address ' .TYPE=ACTION

'TPIO06E: Specified IP Address already exists in DB2.'

H.3 TPI DB2 Table Definition

create table tpidata (ipaddr int not null,
hostnm char (18),
addnm char(18),
room char (10),
owner char (32),
ownerph char(16),
equip char(16),
opersys char(16),
text char (80),
primary key(ipaddr));
create unique index tpiindex on tpidata (ipaddr);
commit;

A Beginner's Guide to MVS TCP/IP Socket Programming 320

A Beginner's Guide to MVS TCP/IP Socket Programming

H.4 Sample Log from TPI Server Execution

The following is an example of logwriter output from an execution of the
Two server subtasks are started, and one client
connection is processed before the server is modified to close down.

TPI concurrent server.

TPI Log Writer Task has started

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
15:
15:
15:
15:
15:

11.
11.
12.
12.
12.
12.
12.
12.
12.
12.
12.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
29.
29.
31.
31.
31.
25.
25.
25.
25.
25.

16
90
20
20
52
53
54
54
54
54
55
49
50
50
50
51
51
51
52
52
52
52
53
90
93
68
69
72
29
35
36
85
85

TPIMAIN
TPISERV
TPISERV
TPISERV
TPISERV
TPISERV
TPISERV
TPIMAIN
TPIMAIN
TPIMAIN
TPIMAIN
TPIMAIN
TPIMAIN
TPIMAIN
TPIMAIN
TPIMAIN
TPISERV
TPISERV
TPISERV
TPIMAIN
TPISERV
TPIMAIN
TPIMAIN
TPISERV
TPISERV
TPISERV
TPISERV
TPISERV
TPIMAIN
TPISERV
TPISERV
TPISERV
TPISERV

001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
011
001
001
001
001

TPIMAIN Client ID Family=0002 Address Space=T18ATPI Subtask=008FDA28
00005EF8 TPISERV entered

TPISERV Client ID Family=0002 Address Space=T18ATPI Subtask=008FOBF8
00005EF8 TPISERV Going to sleep.

00005F50 TPISERV entered

TPISERV Client ID Family=0002 Address Space=T18ATPI Subtask=008F0968
00005F50 TPISERV Going to sleep.

00000000 Socket descriptor from SOCKET Call

00000000 Issuing BIND with socket descriptor

00000000 Issuing LISTEN with socket descriptor

00000031 Issuing SELECT with MAXSOC

00000001 SYNC completed — number of SDs returned 1

00000000 Issuing ACCEPT 2

00000001 ACCEPT returned new socket descriptor

Givesocket SD=0001 Family=0002 Address Space=T18ATPI Subtask=008FO0BF8 3
00000031 Issuing SELECT with MAXSOC 4

40000000 TPISERV Woke up 5

00000001 Takesocket With old descriptor 5

00000000 Takesocket returned new descriptor 5

00000001 SYNC completed — number of SDs returned 6

Peer socket address - Family=0002 Port number=01024 IP address=9.67.56.81
00000001 Closing down socket 7

00000031 Issuing SELECT with MAXSOC 38

00000005 Peek returned so many bytes 9

00000018 Receive returned so many bytes

000000E6 Sent so many bytes

00000000 Close done

00005EF8 TPISERV Going to sleep.

TPIMAIN Modified to STOP - we close down.

40000004 TPISERV Woke up

40000004 TPISERV is shutting down

40000004 TPISERV Woke up

40000004 TPISERV is shutting down

The first column is a timestamp column. The second column is the name of
the module that requested the line printed on the log. Third column is an
internal message number.

Note the sequence

W W J o U WDN

Main
Main
Main
Main

The remaining part of a log line is free format.

of events around the client connection:

task is posted in its select.

task issues accept.

task issues givesocket and posts subtask to start processing.
task enters a new select.

Subtask wakes up and issues a takesocket.

Main task is again posted in its select

Main task closes the socket it gave to the subtask.

Main task issues a new select.

Subtask goes on processing the client request.

1.0 Appendix I. Sample Compile and Link JCL Procedures

A Beginner's Guide to MVS TCP/IP Socket Programming 321

A Beginner's Guide to MVS TCP/IP Socket Programming

This appendix contains the compilation and link procedures that were used
to compile and link the sample programs in this book.

The procedures use an ITSO utility program called JCLTEST. This program
compares two comma-separated strings that are passed in the PARM field.

If the strings are equal, it returns a return code of zero. We used this
program to set return codes to be used by the conditional JCL statements.
Using this technique, we avoided maintaining four different procedures per
language; but we were able to package all combinations of SQL, CICS and
code without SQL or CICS into one procedure per language.

—
—

Assemble JCL Procedure
COBOL Compile JCL Procedure
C/370 Compile JCL Procedure
Link/Edit JCL Procedure

[
co o

—
[~

1.1 Assemble JCL Procedure

//TCPASM PROC MEMBER=TEMPNAME,

// USER=TCPIP,

// MLQ=ITSC,

// SUFFIX=1$,

// WSPC=500,

// DB2=,

// TCPMLQ=V3R1MO,

// OUTC="'*",

// WORK=SYSDA,

// ASMPARM="'OBJECT , NODECK, NOXREF '
//**
//* *
//* TCP/IP MVS V3Rl - ITSO, Raleigh *
//* *
//* Assemble an Assembler module *
//* *
//* *
//* Input: user.mlqg.ASM (member) *
//* Macroes: user.mlg.ASM *
//* Object deck: wuser.mlq.OBJ (member) *
//* *
//* MEMBER Module member name *
//* USER HLQ for source, object and list datasets *
//* MLQ MLQ for source, object and list datasets *
//* DB2 Specify DB2=YES if source includes SQL stmt's *
//* cics Specify CICS=YES if source includes CICS stmt's *
//* TCPMLQ TCPIP dataset MLQ *
//* SUFFIX CICS translator module suffix *
//* ASMPARM Assembler parameters *
//* OUTC Output class for SYSOUT *
//* WORK Work UNIT *
//* *
//**
//*

//DB2TEST EXEC PGM=JCLTEST, PARM='YES,6 &DB2.'

//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

// IF (DB2TEST.RC=0) THEN *** Include DB2 Precompile ***

//*

//DB2PRE EXEC PGM=DSNHPC, PARM='HOST (ASM) , TWOPASS', REGION=4096K
//DBRMLIB DD DSN=&USER..&MLQ..DBRMLIB.DATA (&§MEMBER), DISP=SHR

//STEPLIB DD DSN=SYS1.DSN230.DSNEXIT,DISP=SHR

// DD DSN=SYS1.DSN230.DSNLOAD, DISP=SHR

A Beginner's Guide to MVS TCP/IP Socket Programming

322

A Beginner's Guide to MVS TCP/IP Socket Programming

//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=&WORK.,

// SPACE= (800, (§WSPC, &WSPC))

//SYSLIB DD DSN=&USER..&MLQ..ASM,DISP=SHR

//SYSPRINT DD SYSOUT=&OUTC.

//SYSTERM DD SYSOUT=&OUTC.

//SYSUDUMP DD SYSOUT=&OUTC.

//SYSUT1 DD SPACE=(800, (&WSPC, &WSPC), , ,ROUND) , UNIT=&WORK.
//SYSIN DD DSN=&USER. .&MLQ..ASM(&MEMBER.) , DISP=SHR

//*

// ELSE *** No DB2 precompile, copy input ***
//*

//DB2NO EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSUT1 DD DSN=&USER. .&MLQ..ASM(&MEMBER.) , DISP=SHR
//SYSUT2 DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=&WORK.,

// SPACE= (800, (&§WSPC, §WSPC))
//SYSPRINT DD DUMMY

//*

// ENDIF *** End of DB2 section
//*

//CICSTEST EXEC PGM=JCLTEST, PARM='YES, &CICS."'
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

// IF (CICSTEST.RC = 0) THEN *** CICS Translation ***
//*

//CICSTRN EXEC PGM=DFHEAP&SUFFIX,

// REGION=4096K

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=&OUTC

//SYSPUNCH DD DSN=&&SYSCIN,

// DISP=(NEW, PASS) , UNIT=&WORK,

// DCB=BLKSIZE=400,

// SPACE= (400, (400,100))

//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)

//*

// ELSE *** No CICS Translation, copy input ***
//*

//CICSCOPY EXEC PGM=IEBGENER
//SYSUT1 DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSUT2 DD DSN=&&SYSCIN,

// DISP=(NEW, PASS) , UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE= (400, (400,100))

//SYSIN DD DUMMY
//SYSPRINT DD DUMMY

//*

// ENDIF *** End of CICS Translation section ***

//*

//* Assemble source into an object deck.

//*

//ASM EXEC PGM=ASMA90, PARM='&ASMPARM. ', COND= (4, LT) , REGION=4096K

//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.AMODGEN, DISP=SHR

// DD DSN=&USER. .&MLQ..ASM,DISP=SHR

// DD DSN=TCPIP.&TCPMLQ..SEZACMAC,DISP=SHR
// DD DSN=CICS.SDFHMAC,DISP=SHR

//SYSLIN DD DSN=&USER..&MLQ..OBJ (&MEMBER.), DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC.

//SYSTERM DD SYSOUT=&OUTC.

//SYSUT1 DD SPACE=(CYL, (5,2),,,ROUND), UNIT=&WORK.
//*

A Beginner's Guide to MVS TCP/IP Socket Programming 323

A Beginner's Guide to MVS TCP/IP Socket Programming

//* MVS Binder step without resolving external references

//*
//LKEDOBJ EXEC PGM=IEWL, REGION=4096K,
// PARM="'NCAL, LET'

//SYSIMOD DD DSN=&USER..&MLQ. .LOAD (§MEMBER.) ,DISP=SHR
//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,

// SPACE= (1024, (200, 20))

//SYSPRINT DD SYSOUT=&OUTC

//SYSLIN DD DSN=&USER..&MLQ..OBJ (&MEMBER.), DISP=SHR
// PEND

1.2 COBOL Compile JCL Procedure

//TCPCOB PROC SUFFIX=1$,

// DB2=,

// CICs=,

// MEMBER=,

// USER=TCPIP,

// MLQO=ITSC,

// WSPC=500,

// OUTC="'*",

// WORK=SYSDA
//**
//* *
//* TCP/IP MVS V3Rl - ITSO, Raleigh *
//* *
//* Compile a COBOL source module *
//* *
//* *
//* Input: user.mlq.COBOL (member) *
//* Object deck: wuser.mlq.OBJ (member) *
//* *
//* MEMBER Module member name *
//* USER HLQ for source, object and list datasets *
//* MLQ MLQ for source, object and list datasets *
//* DB2 Specify DB2=YES if source includes SQL stmt's *
//* cIcs Specify CICS=YES if source is for CICS *
//* OUTC Output class for SYSOUT *
//* WORK Work UNIT *
//* SUFFIX CICS translator module suffix *
//* *
//**
//*

//DB2TEST EXEC PGM=JCLTEST, PARM='YES,6 &DB2.'

//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

// IF (DB2TEST.RC=0) THEN *** DB2 Precompile ***

//*

//DB2PRE EXEC PGM=DSNHPC, PARM='HOST (COB2) ,APOST', REGION=4096K
//DBRMLIB DD DSN=&USER..&MLQ..DBRMLIB.DATA (&éMEMBER.),

// DISP=SHR

//STEPLIB DD DSN=SYS1.DSN230.DSNEXIT,DISP=SHR

// DD DSN=SYS1.DSN230.DSNLOAD,DISP=SHR

//SYSCIN DD DSN=&&DSNHOUT,DISP=(NEW,PASS), UNIT=&WORK.,
// SPACE= (800, (&WSPC, &WSPC))

//SYSLIB DD DSN=&USER. .&MLQ..SRCLIB.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC.

//SYSTERM DD SYSOUT=&OUTC.

//SYSUDUMP DD SYSOUT=&OUTC.

//SYSUT1 DD SPACE=(800, (&WSPC, &WSPC),, ,ROUND) , UNIT=&WORK.
//SYSUT2 DD SPACE=(800, (&WSPC, &WSPC),, ,ROUND) , UNIT=&WORK.

A Beginner's Guide to MVS TCP/IP Socket Programming

324

A Beginner's Guide to MVS TCP/IP Socket Programming

//SYSIN DD DSN=&USER. .&MLQ. .COBOL (&MEMBER.) , DISP=SHR

//*

// ELSE *** No DB2 Precompile, copy input ***
//*

//DB2COPY EXEC PGM=IEBGENER

//SYSuUT1 DD DSN=&USER. .&MLQ. .COBOL (&MEMBER.) , DISP=SHR
//SYSUT2 DD DSN=&&DSNHOUT,DISP=(NEW,PASS),UNIT=&WORK.,

// SPACE= (800, (§WSPC, &WSPC))

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF *** End of DB2 Precompile section **%*
//*

//CICSTEST EXEC PGM=JCLTEST, PARM='YES, &CICS.'

//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

// IF (CICSTEST.RC = 0) THEN *** CICS Translation ***
//*

//CICSTRN EXEC PGM=DFHECP&SUFFIX,

// PARM="'COBOL2',

// REGION=4096K

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSPUNCH DD DSN=&&SYSCIN,

// DISP=(NEW, PASS) , UNIT=&WORK,

// DCB=BLKSIZE=400,

// SPACE= (400, (400,100))

//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)

//*

// ELSE *** No CICS Translation, copy input ***
//*

//CICSCOPY EXEC PGM=IEBGENER
//SYSUT1 DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSUT2 DD DSN=&&SYSCIN,

// DISP=(NEW, PASS) , UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE= (400, (400,100))

//SYSIN DD DUMMY
//SYSPRINT DD DUMMY

//*

// ENDIF *** End of CICS Translation section ***
//*

//* COBOL2 Compile source module into an object deck.

//*

//COBII EXEC PGM=IGYCRCTL, REGION=4096K,

// PARM="'"NODYNAM, LIB, OBJECT,6 RENT, RES, APOST'

//STEPLIB DD DSN=COB2.COB2COMP,DISP=SHR
//SYSLIB DD DSN=CICS.SDFHCOB,DISP=SHR

// DD DSN=CICS.USER.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC.

//SYSTERM DD SYSOUT=&OUTC.

//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&USER. .&MLQ..OBJ (&MEMBER.) ,DISP=SHR
//SYSUT1 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUT2 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUT3 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUT4 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUT5 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUT6 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUT7 DD UNIT=&WORK, SPACE= (460, (350,100))
//SYSUTS8 DD UNIT=&WORK, SPACE= (460, (350,100))
//*

A Beginner's Guide to MVS TCP/IP Socket Programming 325

//* MVS Binder
//*

//LKEDOBJ EXEC
//

//SYSLMOD DD
//SYSUT1 DD
//

//SYSPRINT DD
//SYSLIN DD
// PEND

A Beginner's Guide to MVS TCP/IP Socket Programming

step without resolving external references

PGM=IEWL, REGION=4096K,

PARM="'NCAL, LET'

DSN=&USER. . §MLQ. . LOAD (§MEMBER.) , DISP=SHR
UNIT=&WORK, DCB=BLKSIZE=1024,

SPACE= (1024, (200, 20))

SYSOUT=&0UTC.

DSN=&USER. . §MLQ. . OBJ (§SMEMBER .) , DISP=SHR

1.3 C/370 Compile JCL Procedure

//TCPC370 PROC MEMBER=,

// USER=TCPIP,

// MLQ=ITSC,

// SUFFIX=1$,

// DB2=,

// CcICS=,

// WORK=SYSDA,

// C370MLQ=V2R1MO,

// PLIMLQ=V2R3MO,

// TCPMLQ=V3R1MO,

// CPARM="'DEF (MVS) , SOURCE',
// WSPC=500,

// OUTC="'*"
//**
//*

//* TCP/IP MVS V3Rl — ITSO, Raleigh
//*

//* Compile a C source module

//*

//*

//* Input: user.mlq.C (member)

//* Header files: user.mlq.H
//* Object deck: user.mlq.OBJ (member)

//*

//* MEMBER
//* USER
//* MLQ
//* TCPMLQ
//* C370MLQ
//* PLIMLQ
//* CPARM
//* DB2
//* cIcs
//* SUFFIX
//* OUTC
//* WORK
//*

//***

//*

//DB2TEST EXEC
//STEPLIB DD
//*

// IF (DB2TEST.
//*

//DB2PRE EXEC
//DBRMLIB DD
//

//STEPLIB DD

Module member name

HLQ for source, object and list datasets
MLQ for source, object and list datasets
TCPIP dataset MLQ

C/370 dataset MLQ

PL/I dataset MLQ

C Compiler parameter options

Specify DB2=YES if source includes SQL stmt's.
Specify CICS=YES if source is for CICS
CICS translator module suffix

Output class for SYOUTC

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Work UNIT *
*
*

PGM=JCLTEST, PARM="'YES, &DB2."'
DSN=TCPIP.ITSC.LOAD, DISP=SHR

RC=0) THEN *** DB2 Precompile ***

PGM=DSNHPC, PARM="'HOST (C) ' , REGION=4096K
DSN=&USER. . §MLQ. .DBRMLIB.DATA (&§MEMBER.),
DISP=SHR
DSN=SYS1.DSN230.DSNEXIT, DISP=SHR

A Beginner's Guide to MVS TCP/IP Socket Programming

326

A Beginner's Guide to MVS TCP/IP Socket Programming

// DD DSN=SYS1.DSN230.DSNLOAD,DISP=SHR
//SYSCIN DD DSN=&&DSNHOUT,DISP=(NEW,PASS), UNIT=&WORK.,
// SPACE= (800, (&WSPC, &WSPC))

//SYSLIB DD DSN=&USER. .&MLQ. .SRCLIB.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC.

//SYSTERM DD SYSOUT=&OUTC.

//SYSUDUMP DD SYSOUT=&OUTC.

//SYSUT1 DD SPACE=(800, (&WSPC, &WSPC),, ,ROUND) , UNIT=&WORK.
//SYSUT2 DD SPACE=(800, (&WSPC, &WSPC), , ,ROUND) , UNIT=&WORK.
//SYSIN DD DSN=&USER. .&MLQ. .C (&MEMBER.) , DISP=SHR

//*

// ELSE *** No DB2 Precompile, copy input ***
//*

//DB2COPY EXEC PGM=IEBGENER

//SYSUT1 DD DSN=&USER. .&MLQ. .C (&MEMBER.) , DISP=SHR
//SYSUT2 DD DSN=&&DSNHOUT,DISP=(NEW,PASS), UNIT=&WORK.,

// SPACE= (800, (&§WSPC, &WSPC))

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF *** End of DB2 Precompile section **%*
//*

//CICSTEST EXEC PGM=JCLTEST, PARM='YES, &CICS.'

//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

// IF (CICSTEST.RC = 0) THEN *** CICS Translation ***

//*

//CICSTRN EXEC PGM=DFHEDP&SUFFIX,

// REGION=4096K

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=&O0UTC

//SYSPUNCH DD DSN=&&SYSCIN,

// DISP=(NEW, PASS) , UNIT=&WORK,

// DCB=BLKSIZE=400,

// SPACE= (400, (400,100))

//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)

//*

// ELSE *** No CICS Translation, copy input ***
//*

//CICSCOPY EXEC PGM=IEBGENER
//SYSUT1 DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSUT2 DD DSN=&&SYSCIN,

// DISP=(NEW, PASS) , UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE= (400, (400,100))

//SYSIN DD DUMMY
//SYSPRINT DD DUMMY

//*

// ENDIF *** End of CICS Translation section ***
//*

//* Compile a C module into an object deck

//*

//COMPILE EXEC PGM=EDCCOMP,

// PARM= ('&CPARM'),

// REGION=4096K

//STEPLIB DD DSN=C370.&C370MLQ. . SEDCLINK, DISP=SHR

// DD DSN=PLI.&PLIMLQ..SIBMLINK,DISP=SHR

// DD DSN=C370.&C370MLQ. . SEDCCOMP, DISP=SHR

//SYSLIB DD DSN=TCPIP.&TCPMLQ. .SEZACMAC, DISP=SHR

// DD DSN=C370.&C370MLQ. . SEDCHDRS, DISP=SHR, DCB= (BLKSIZE=3120)
//USERLIB DD DSN=&USER. .&MLQ. .H, DISP=SHR

//SYSIN DD DSN=&&SYSCIN,DISP=SHR

A Beginner's Guide to MVS TCP/IP Socket Programming 327

//SYSLIN DD
//SYSMSGS DD
//SYSPRINT DD
//SYSCPRT DD
//SYSTERM DD
//SYSUT1 DD
//
//
//SYSUT2 DD
//SYSUT4 DD
//
//
//SYSUT5 DD
//
//
//SYSUT6 DD
//
//
//SYSUT7 DD
//
//
//SYSUTS8 DD
//
//
//SYSUT9 DD
//
//
//SYSUT10 DD
//
//
//*
//* MVS Binder
//*
//LKEDOBJ EXEC
//
//SYSLMOD DD
//SYSUT1 DD
//
//SYSPRINT DD
//SYSLIN DD
// PEND

//TCPLINK PROC

A Beginner's Guide to MVS TCP/IP Socket Programming

DSN=&USER. . &MLQ. .OBJ (§MEMBER.) , DISP=SHR
DSN=C370.&C370MLQ. . SEDCMSGS (EDCMSGE) , DISP=SHR
SYSOUT=&0UTC .

SYSOUT=&0UTC .

DUMMY
DSN=&&SYSUT1, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
SYSOUT=&0UTC
DSN=&&SYSUT4, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&SYSUTS5, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&SYSUT6, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&SYSUT7, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&SYSUT8, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&SYSUT9, DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&SYSUT10,DISP=(, PASS) , UNIT=&WORK. ,
SPACE= (32000, (30,20)),

DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)

step without resolving external references

PGM=IEWL, REGION=4096K,

PARM="'NCAL, LET'

DSN=&USER. . §MLQ. . LOAD (§MEMBER.) , DISP=SHR
UNIT=&WORK, DCB=BLKSIZE=1024,

SPACE= (1024, (200, 20))

SYSOUT=&0UTC.

DSN=&USER. . §MLQ. . OBJ (§SMEMBER .) , DISP=SHR

1.4 Link/Edit JCL Procedure

MEMBER=,
USER=TCPIP,
MLQ=ITSC,

DB2=,

cics=,

IMS=,

COBOL=,

ASM=,

Cc370=,
TCPMLQO=V3R1MO,
PLIMLQO=V2R3MO,
C370MLQ=V2R1MO,
oUTC='*"',
LNKPARM='XREF, LIST',
WORK=SYSDA

//**

//*

*

A Beginner's Guide to MVS TCP/IP Socket Programming

328

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

//***

//*

A Beginner's Guide to MVS TCP/IP Socket Programming

TCP/IP MVS V3Rl - ITSO, Raleigh

Bind (Link/Edit) a program

Syslib: user.mlqg.OBJ

Load module: wuser.mlq.LOAD (member)

MEMBER Module member name

USER HLQ for source, object and list datasets
MLQ MLQ for source, object and list datasets
DB2 Specify DB2=YES if program uses SQL

CICs Specify CICS=YES if program runs in CICS
IMS Specify IMS=YES if program runs in IMS
COBOL Specify COBOL=YESL if program includes COBOL
ASM Specify ASM=YES if program includes ASM
C370 Specify C370=YES if program includes C/370
TCPMLQ TCPIP dataset MLQ

LNKPARM Linkage editor parameters

OuTC Output class for SYSOUT

WORK Work UNIT

If you need to pass SYSLIN input to the Binder, override

SYSIN with stepname LKEDCICS for CICS and LKEDBAT for
non—-CICS link jobs

//LKEDCICS.SYSIN DD * - for CICS links
or
//LKEDBAT.SYSIN DD * - for non-CICS links

//ALLOCW EXEC PGM=IEBGENER

//SYSUT1 DD DSN=NULLFILE, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)

//SYSUT2 DD DSN=&&WORKDS,DISP=(,PASS), UNIT=&WORK,

//
//

SPACE=(TRK, (2,1)),
DCB= (RECFM=FB, LRECL=80)

//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*

//*
//*
//*

Test for program conditions - set RC's for later logic

//TESTCICS EXEC PGM=JCLTEST, PARM='YES, &CICS.'
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

//TESTCOB EXEC PGM=JCLTEST, PARM='YES, &§COBOL. '
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

//TESTC370 EXEC PGM=JCLTEST, PARM='YES, &C370."'
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

//TESTDB2 EXEC PGM=JCLTEST, PARM='YES, &DB2. "'
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

//TESTASM EXEC PGM=JCLTEST, PARM='YES, &ASM. "'
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*

//TESTIMS EXEC PGM=JCLTEST, PARM='YES, &§IMS.'
//STEPLIB DD DSN=TCPIP.ITSC.LOAD,DISP=SHR

//*
//*
//*

If this is a CICS program, we need language dependent
CICS stubs for both CICS and socket interface

A Beginner's Guide to MVS TCP/IP Socket Programming

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

329

A Beginner's Guide to MVS TCP/IP Socket Programming

//*

// IF (TESTCICS.RC = 0) THEN

// IF (TESTC370.RC = 0) THEN

//*

//CICSC370 EXEC PGM=IEBGENER

//SYSUT1 DD DSN=CICS.SDFHC370 (DFHEILID),DISP=SHR
// DD DSN=TCPIP.ITSC.CNTL (EZACICO7),DISP=SHR
//SYSUT2 DD DSN=&&WORKDS,DISP=(MOD, PASS)

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF

// IF (TESTCOB.RC = 0) THEN
//*

//CICSCOB EXEC PGM=IEBGENER

//SYSUT1 DD DSN=CICS.SDFHCOB (DFHEILIC),DISP=SHR

// DD DSN=TCPIP.ITSC.CNTL(EZACICAL),DISP=SHR
//SYSUT2 DD DSN=&&WORKDS,DISP=(MOD,PASS)

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF

// IF (TESTASM.RC = 0) THEN
//*

//CICSASM EXEC PGM=IEBGENER

//SYSUT1 DD DSN=CICS.SDFHMAC (DFHEILIA),DISP=SHR

// DD DSN=TCPIP.ITSC.CNTL(EZACICAL),DISP=SHR
//SYSUT2 DD DSN=&&WORKDS,DISP=(MOD, PASS)

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF
// ENDIF
//*

//* If Program includes SQL calls, we need language dependent
//* DB2 stubs

//*

// IF (TESTDB2.RC = 0) THEN

// IF (TESTC370.RC = 0) THEN

//*

//DB2C370 EXEC PGM=IEBGENER

//SYSUT1 DD DSN=TCPIP.ITSC.CNTL(DSNDLI),DISP=SHR
//SYSUT2 DD DSN=&&WORKDS,DISP=(MOD,PASS)

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF

// IF (TESTCOB.RC = 0) THEN
//*

//DB2COB EXEC PGM=IEBGENER

//SYSUT1 DD DSN=TCPIP.ITSC.CNTL (DSNCLI),DISP=SHR
//SYSUT2 DD DSN=&&WORKDS,DISP=(MOD, PASS)

//SYSIN DD DUMMY

//SYSPRINT DD DUMMY

//*

// ENDIF

// IF (TESTASM.RC = 0) THEN
//*

//DB2ASM EXEC PGM=IEBGENER

//SYSUT1 DD DSN=TCPIP.ITSC.CNTL(DSNALI),DISP=SHR
//SYSUT2 DD DSN=&&WORKDS,DISP=(MOD,PASS)

//SYSIN DD DUMMY

A Beginner's Guide to MVS TCP/IP Socket Programming 330

//SYSPRINT DD
//*

// ENDIF

// ENDIF

//*

A Beginner's Guide to MVS TCP/IP Socket Programming

DUMMY

//* If program includes DL/I calls, we need a language
//* independent stub

//*

// IF (TESTIMS.

//*

//COPYIMS EXEC
//SYSUT1 DD
//SYSUT2 DD
//SYSIN DD
//SYSPRINT DD
//*

// ENDIF

//*

RC = 0) THEN

PGM=IEBGENER

DSN=TCPIP.ITSC.CNTL (DFSLIO00),DISP=SHR
DSN=&&WORKDS, DISP= (MOD, PASS)

DUMMY

DUMMY

//* We need different SYSLIB setup for CICS and non-CICS
//* environments.

//*

// IF (TESTCICS.RC = 0) THEN

//*

//LKEDCICS EXEC PGM=IEWL, REGION=4096K,

//

//SYSLIB DD
// DD
// DD
// DD
// DD
// DD
// DD
// DD
// DD
// DD
// DD

//SYSLMOD DD
//SYSUT1L DD
//

//SYSPRINT DD
//SYSLIN DD

// DD
// DD
//SYSIN DD
//*

// ELSE

//*

//LKEDBAT EXEC
//

//SYSLIB DD
// DD
// DD
// DD
// DD
// DD
// DD
// DD
// DD

//SYSLMOD DD
//SYSUT1L DD
//

//SYSPRINT DD

PARM="'&LNKPARM. '
DSN=&USER. .&MLQ. . LOAD, DISP=SHR
DSN=TCPIP.&TCPMLQ. .SEZACMTX, DISP=SHR
DSN=TCPIP.&TCPMLQ. .SEZATCP,DISP=SHR
DSN=SYS1.TCPIP.&TCPMLQ. .SEZALINK, DISP=SHR
DSN=C370.&C370MLQ. . SEDCBASE, DISP=SHR
DSN=PLI.&PLIMLQ. .SIBMBASE, DISP=SHR
DSN=CICS.SDFHLOAD, DISP=SHR

DSN=COB2 .COB2CICS, DISP=SHR

DSN=COB2 .COB2LIB, DISP=SHR
DSN=SYS1.DSN230.DSNLOAD, DISP=SHR

DSN=IMS .RESLIB,DISP=SHR

DSN=&USER. . §MLQ. . LOAD (§MEMBER.) , DISP=SHR
UNIT=&WORK, DCB=BLKSIZE=1024,

SPACE= (1024, (200, 20))

SYSOUT=&0UTC.
DSN=&&WORKDS, DISP= (OLD, DELETE)

DSN=&USER. . §MLQ. . OBJ (§SMEMBER .) , DISP=SHR
DDNAME=SYSIN

DUMMY

PGM=IEWL, REGION=4096K,

PARM="'&LNKPARM. '
DSN=C370.&C370MLQ. . SEDCBASE, DISP=SHR
DSN=PLI.&PLIMLQ. .SIBMBASE, DISP=SHR
DSN=TCPIP.&TCPMLQ. .SEZACMTX, DISP=SHR
DSN=TCPIP.&TCPMLQ. .SEZATCP,DISP=SHR
DSN=SYS1.TCPIP.&TCPMLQ. .SEZALINK, DISP=SHR
DSN=&USER. .&MLQ. . LOAD, DISP=SHR

DSN=COB2 .COB2LIB, DISP=SHR
DSN=SYS1.DSN230.DSNLOAD, DISP=SHR
DSN=IMS.RESLIB,DISP=SHR

DSN=&USER. . §MLQ. . LOAD (§MEMBER.) , DISP=SHR
UNIT=&WORK, DCB=BLKSIZE=1024,

SPACE= (1024, (200, 20))

SYSOUT=&0UTC.

A Beginner's Guide to MVS TCP/IP Socket Programming

331

//SYSLIN
//

//
//SYSIN
//*

// ENDIF
//*

//

DD
DD
DD
DD

PEND

A Beginner's Guide to MVS TCP/IP Socket Programming

DSN=&USER. . §MLQ. .OBJ (§MEMBER.) ,DISP=SHR
DSN=&&WORKDS, DISP=(OLD, DELETE)
DDNAME=SYSIN

DUMMY

The link/edit procedure uses a number of SYSLIN files:

DFHEILID C/370 CICS language stub

INCLUDE SYSLIB (DFHELII)

EZACICO7 C-sockets library routines

INCLUDE SYSLIB(EZACICO07)

DFHEILIC COBOL CICS language stub

INCLUDE SYSLIB (DFHECI)

EZACICAL Sockets Extended CICS interface stub

INCLUDE SYSLIB(EZACICAL)

DFHEILIA Assembler CICS language stub

INCLUDE SYSLIB (DFHEAI)

DSNDLI C/370 SQL language stub

INCLUDE SYSLIB (DSNDLI)

DSNCLI COBOL SQL language stub

INCLUDE SYSLIB(DSNCLI)

DSNALT Assembler SQL language stub

INCLUDE SYSLIB(DSNALI)

DFSLI0O00 DL/I Language stub

INCLUDE SYSLIB (DFSLIO000)

ABBREVIATIONS List of Abbreviations

Abbreviation

ACEE

ACK

AF_INET

AF_IUCV

AF_UNIX

Meaning

Accessor Environment Element
Acknowledgement Segment (TCP)
Addressing Family Internet
Addressing Family IUCV

Addressing Family UNIX

A Beginner's Guide to MVS TCP/IP Socket Programming

332

APPC

AS

BMP

BMS

BSD

CICs

CPI-C

CSM

DCE

DDM

DLI

DNS

DPI

DPL

DRDA

DST

DTP

ECB

EIB

EOM

FIN

FTP

GLBD

GTF

IC

ICMP

IDL

A Beginner's Guide to MVS TCP/IP Socket Programming

Advanced Interactive Executive
Authorized Program Facility

Application Programming Interface
Advanced Program to Program Communication
Address Resolution Protocol

Address Space

Batch Message Program (IMS)

Basic Mapping Support (CICS)

Berkeley Software Distribution

Customer Information Control System
Common Programming Interface - Communications
Completed Status Message

Distributed Computing Environment
Distributed Data Management

Data Language One (IMS)

Domain Name System

Distributed Programming Interface
Distributed Program Link (CICS)
Distributed Relational Data Access

Data Services Task

Distributed Transaction Processing (CICS)
Event Control Block

Execute Interface Block (CICS)

End Of Message

Finish Segment (TCP)

File Transfer Protocol

Global Location Broker Daemon (server)
Generalized Trace Facility

Interval Control (CICS)

Internet Control Message Protocol

Interface Definition Language

A Beginner's Guide to MVS TCP/IP Socket Programming

333

IMS

IP

IPCS

ISN

ITSO

Iucv

LFS

LLBD

LPD

MF'S

MIB

MID

MOD

MPP

MPR

MQOI

MOM

MsSs

MTU

NCK

NCs

NDB

NF'S

NIDL

NRGLBD

ONC

OSF

PCB

PCT

A Beginner's Guide to MVS TCP/IP Socket Programming

Information Management System
Internet Protocol

Interactive Problem Control System
Initial Sequence Number

International Technical Support Organisation
Inter-User Communication Vehicle

Job Entry Subsystem

Local Area Network

Logical File System (OpenEdition/MVS)
Local Location Broker Daemon (server)
Line Printer Deamon (server)

Message Formatting Services (IMS)
Management Information Base

Message Input Descriptor (IMS)
Message Output Descriptor (IMS)
Message Processing Program (IMS)
Message Processing Region (IMS)
Message Queueing Interface

Message Queue Manager

Maximum Segment Size

Maximum Transmission Unit

Network Computing Kernel

Network Computing System

Network Data Base

Network File System

Network Interface Definition Language
Non Replicated Global Location Broker Daemon
Open Network Computing

Open Software Foundation

Program Communication Block (IMS)

Program Control Table (CICS)

A Beginner's Guide to MVS TCP/IP Socket Programming

(server)

334

PF'S

PDU

PPT

PSB

RACF

RCT

RSH

RSM

SAF

SBCS

SMTP

SNMP

SNA

SQL

SYN

TCB

TCP

TD

TF'TP

TIM

TRM

TRUE

UDP

UUID

VMCF

A Beginner's Guide to MVS TCP/IP Socket Programming

Physical File System (OpenEdition/MVS)
Protocol Data Unit

Processing Program Table (CICS)
Program Specification Block (IMS)
Resource Access Control Facility
Reverse Address Resolution Protocol
Resource Control Table (CICS)
Record Descriptor Word

Request for Comments

Routing Information Protocol
Remote Procedure Call

Remote Shell Protocol

Request Status Message

Security Access Facility

Single Byte Character Set

Simple Mail Transfer Protocol
Simple Network Management Protocol
System Network Architecture
Structured Query Language
Synchronize Segment (TCP)

Task Control Block

Transmission Control Protocol
Transient Data (CICS)

Trivial File Transfer Protocol
Transaction Initiation Message
Transaction Request Message

Task Related User Exit (CICS)

User Data Protocol

Universal Unique Identifier

VM Communication Facility

Virtual Telecomunication Access Method

A Beginner's Guide to MVS TCP/IP Socket Programming

335

A Beginner's Guide to MVS TCP/IP Socket Programming

WFI Wait For Input (IMS)
XDR External Data Representation Standard
XTI X/Open Transport Interface

INDEX Index

Special Characters
CSMOKY 9.3.4

REQSTS 9.3.2 9.3.3
TRNREQ 9.3.2 9.3.3
A

abbreviations ABBREVIATIONS
accept 3.4 5.7 6.6 11.1
accept, trace 11.4
ACEE 5.11.2

ACK segment, TCP 11.3
acknowledgement, TCP 11.3
acronyms ABBREVIATIONS
active close 5.9

active socket 5.5

adapter (CICS) 10.2

address class 3.2.1

address space name 5.3

address space prefix (IMS) 9.3.3
addressing 3.2

addressing family 3.6
ADDRSPCPFX 9.3.3

AF_INET 3.6 3.6.1 5.4 5.5

AF_INET socket address 3.6
6

AF_IUCV 3.6

AF_TUCV socket address 3.6
AF_UNIX 3.6 3.6.1

AIBTDLI 9.2

AMDPRDMP 11.3

AnyNet/MVS 3.6.1

AnyNet /MVS socket 3.6

apitype3 5.10

APPC 1.2.3 9.1 10.1
application model 1.2.1
application protocol 5.8 5.8.1
application split 1.2.1
ARP 3.1
ASCIT 5.8.
ASMADLI 9.2
assembler macro interface 4.4
assist module (IMS) 9.2 9.3.4
association 3.3 5.7

assortedparms 8.2
ASXBSENV 5.11.2
asynchronous 5.10
asynchronous call 4.4

asynchronous select 6.5

Athena widget set 2.4

attach server subtasks 6.4
authentication 5.11 9.3.1
authorization 5.11 5.11.2 9.3.1
B

backlog queue 5.6 11.4

basic mapping support 10.1

3 2.3.3 2.3.4
2 9.3.4

A Beginner's Guide to MVS TCP/IP Socket Programming 336

A Beginner's Guide to MVS TCP/IP Socket Programming

Berkeley Software Distribution 2.2
big endian 5.8.3

binary integers 5.8.3

bind 5.5 5.9 2

bind for clients
bind, trace 11.4
blocking 5.10

BMS 10.1

BSD 4.2

BSD sockets 2.2
buffer flushing 5.8.1
(o]

C-sockets 2.2
CADLI 9.2 9.3.
call interface 4.3
CBLADLI 9.2 9.3.4
choosing an API
CICS listener 10
CICS 0S/2 10.1
CICS sockets 10.1
CICS task number 5.3
CICS/6000 10.1
CICS/ESA 10.1
client 3.7
client ID 5.3 6.6.1 6.6.2 9.3.3
client ID in CICS 5.3

client ID of a C-socket program 5.3.1
client ID structure 5.3 5.3.2

client program 3.7.3 7.1

client use of bind 8.2
client/server design model 1.2.2
close 5.9 5.9.2 7.4

closing a connection 5.

communications model 1.2.3

completed status message (IMS) 9.3.4
concurrent server 3.7.2 1.3 6.1
concurrent server child program 3.7.3 6.1
concurrent server main program 3.7.3 6.1
connect 3.4 1.3

connect loop 7.3

connect on datagram sockets 8.3

connected sockets 5.8.2

connection 3.3
connection-oriented
connectionless 3.4
conversation 1.
conversational 1.2.3
cooperative applications 1.2
CPI-C 1.2.3 9.1 10.1

{o¢]

[0 |

s
N

: |

(o8]

N

1

o |

~J

(3]
[~

{o¢]
—

N
o8]

CSKD CICS transaction 10.2
CSKE CICS transaction 10.2
CSKL CICS transaction 10.2

CSM (IMS) 9.3.4

CSMOKY 9.3.4

D

data representation 5.8.3
data services task 6£.2.2
dataglance 11.3

datagram socket 2.2 3.4
datagram sockets 21
datagram truncation 8.4

DCE/RPC 1.2.3 9.1 10.1

A Beginner's Guide to MVS TCP/IP Socket Programming 337

A Beginner's Guide to MVS TCP/IP Socket Programming

DDM 1.2.1

debugging 11.0

dequeue 6.2.1

dequeue connection requests 5.7
design models 1.2

designing cooperative applications 1.2
distributed data access 1.2.1
distributed database access 1.2.1
distributed dialog 1.2.1
distributed display 1.2.1
distributed function 1.2.1
distributed presentation 1.2.1
distributed program link (CICS) 1.2.3 10.1
distributed transaction processing (CICS) 10.1
distributed windows 1.2.1
distribution model 1.2.2

domain 5.4

dotted decimal notation 3.2.1

DPI 2.6

DPL (CICS) 10.1

DRDA 1.2.1

DST 6.2.2

DTP (CICS) 10.1

dual-purpose IMS servers 9.4

E

EADDRINUSE 5.9

EADDRNOTAVAIL 11.1

EBCDIC 5.8.3 9.3.3 9.3.4

ECB parameter on EZASMI 6.5
EIBTASKN 5.3

EINPROGRESS 5.10

EINVAL 7.3

encapsulation 3.5

end-of-message marker 5.8.1
endpoint 3.3

enqueue 6.2.1

EOM segment 9.3 9.3.4

ephemeral port number 3.2.2

EPIPE 5.9.1

errno 4.3 11.1

errno 10191 5.3

etc.services 3.2.2
etc.services 5.5

ETIMEDOUT 7.3 11.1

EWOULDBLOCK 5.10 11.1

exception handling 11.1

explicit mode 9.2 9.3.2 9.3.3

—

EZACICO0 10.2
EZACICOl 10.2
EZACIC02 10.2
EZACICO03 10.2
EZACIC04 4.3
EZACICO5 4.3
EZACIC06 4.3 6.5
EZACICO8 4.3 7.3.1

EZACICO08 return codes 7.3.1
EZACICAL 10.2 10.4

EZASMI 6.4

F

failure of network interface 3.2.1
fecntl 5.10 11.1

FILE command 11.4

A Beginner's Guide to MVS TCP/IP Socket Programming 338

A Beginner's Guide to MVS TCP/IP Socket Programming

file descriptor 3.6.1

FIN segment 5.9

FIONBIO 5.10

fixed length messages 5.8.1

flags on recv and send calls 5.8.2
flow control 3.4

fork 6.1

fragmentation 3.5

full duplex 3.4

function shipping (CICS) 10.1

G

getclientid 5.3.2 7.2.1
getclientid, trace 11.4
gethostbyaddr 3.2.1
gethostbyaddress 7.3.1
gethostbyname 3.2.1
getservbyname 3.2.2
getsockname 5.4
givesocket 6.6.1
givesocket (IMS) 9.3.3
global storage area
GTF event identifier 1
GTF trace collection 1
H

half association 3.3
half close 5.9.1
high-level API 2.1
host entry structure 7.3.1

host name 3.2.1

host name list 3.2.1

host tables 3.2.1

htonl 5.8.3

htons 5.8.3

I

ICMP 3.1

identifying your socket program 5.3
implicit mode 9.2 9.3.2 9.3.4

implicit mode restrictions on client 9.3.4
IMS assist module 9.2

IMS listener 9.2 9.3

IMS sockets 9.1

IMS/AS 9.1

IMSERVER 9.3.3

IMSLSECX 9.3.1

INADDR_ANY 5.5 8.2

inet_addr 3.2.1

inet_ntoa 3.2.1

initapi 5.3 6.4 .2

initapi (CICS) 10.3
initapi (IMS) 9.3.3
initapi, trace 11.
initial sequence number, TCP 11.3
initialize 7.2

integrated socket 3.6.1

Inter-User Communication Vehicle 4.7
internet domain 5.4

internet domain socket 3.6

interval control (CICS) 10.3

ioctl 5.10

Ip 3.1

IP addresses 3.2.1
IP datagram fragmentation 3.5

[~
o8]

[~

s

4

—
o8]

—
o8]

(1
[~

1

[~

A Beginner's Guide to MVS TCP/IP Socket Programming 339

A Beginner's Guide to MVS TCP/IP Socket Programming

IP header 3.5

IPCS 11.3

ISN 11.3

iterative server 3.7.1 3.7.3 5.2
IUCV socket API trace 11.4

IUCV sockets 4.7

J

jobname 5.3

K

kerberos 2.7 5.11.1

L

LFS 3.6.1

linger 5.9.2

linger time 5.9.2

linking CICS socket programs 10.4
listen 3.4 5.6

listen, trace 11.4

listener (CICS) 10.2

listener (IMS) 9.2 9.3

listener configuration data set (IMS) 9.3
listener security exit (IMS) 9.3.1 9.3.3
little endian 5.8.3

local socket 3.6

logical filesystem 3.6.1
low-level API 2.1

M

macro interface 4.4

manifest header file 4.2

maxdesc 5.3.1

maximum segment size, TCP 11.3
maxsno 5.3

maxsoc 5.3

message (IMS) 9.3

message design 5.8

message formatting services (IMS) 9.1 9.4
message input descriptor 9.4
message output descriptor 9.4
message queuing 1.2.3

message type identifier 5.8.1
messages in a stream 5.8

MFS 9.1 2.4

MFS formatting options 9.4

MID 9.4

MOD 9.4

MORETRACE SOCKET command 11.4
Motif 2.4

MOI 1.2.3 9.1 10.1

=<
|®
=
-
)
o
Fl
—
—
=
-

MTU 3.5
multihomed host 3.2.1 5.5
multitasking 4.4 6.1
multithreaded 4.4 6.1

N

name server 3.2.1

named socket 5.4

NCS/RPC 1.2.3 2.3

network analyzer 11.3
network byte order 5.8.3

@]

s

A Beginner's Guide to MVS TCP/IP Socket Programming 340

A Beginner's Guide to MVS TCP/IP Socket Programming

network socket 3.6

NFS 1.2.1

non-blocking 5.10 11.1
non-connected sockets 5.8.2
NOTRACE command 11.3

NOTRACE SOCKET command 11.4
noudpgqueuelimit 8.2

ntohl 5.8.3

ntohs 5.8.3

null-terminated string 3.2.1
o

OBEYFILE command 1
obtain a socket 5.4
ONC/RPC 1.2.3 2.3

OpenEdition/MVS 3.6 3.6.1
OpenEdition/MVS socket 3.6.1
OSF/Motif widget set 2.4

P

packet trace 11.3

paradigm 1.1

parallel processing 1.2.2
Pascal sockets 4.6

passive close 5.9

passive socket

password 5.11.1

pathname 3.6

peek flag 5.8.1

peeking into the buffer 5.8.1
peer-to-peer 1.2.2

pending activity 5.10 6.5
pending exception 6.5 6.6.2
pending read 6.5

perror 4.2

PFS 3.6.1

physical filesystem 3.6.1
PING 3.4

pkttrace 11.3

PL/I 4.3.1

PLIADLI 9.2 9.3.4

port number 3.2.2 3.3 5.5
PrmMsg 11.4

process 3.7.3

processing flags 5.8.2
processor pool 1.2.2

protocol 3.1

protocol layers 3.1

protocol stack 3.1

pseudo abend (IMS) 9.5

R

RACF 5.11.1

RACROUTE 5.11.1 5.11.2 6.2.4
RARP 3.1

raw socket 2.2 3.4

RDW's 5.8.1

read 5.8.2

reading data 5.8.2 8.4
receive, trace 11.4

receiving data 5.8

record descriptor words 5.8.1
records in a stream 5.8
recoverable resources (IMS) 9.5

recovery (IMS) 9.5

.2 11.3 11.4

A (e

o

6

A Beginner's Guide to MVS TCP/IP Socket Programming 341

A Beginner's Guide to MVS TCP/IP Socket Programming

recv 5.8.1 5.8.2

recv loop 5.8.2

recvfrom 5.8.2 8.2

reentrant code 6£.2.5

reliable protocol 3.4

remote procedure call design model 1.2.3
REQSTS 9.3.2 9.3.3

request status message (IMS)
reserving a port number 3.2.2
resolve host name 7.3
resolver 3.2.1

retcode 4.3 11.1

retcode on read and write calls 5.8.2
retcode zero 5.8.1

REXX sockets 2.2 4.5

RFC1006 2.5

RPC 2.3

RPC design model 1.2.3

RSM (IMS) 9.3.2 9.3.3

RSM reasoncode 9.3.2

RSM returncode 9.3.2

S

SAF 5.11.1

SCREEN command 11.
screen scrapers 1.2.1
security 5.11 6£.2.4
security exit (IMS 9.3.1
segment 9.3

segment size 3.5

select 5.10 6.5 11.1

select mask 6.5

selectex 5.10
send 5.8.2
sending data 5.8 8.4

sendto 5.8.2 8.2
serializing access 6.2.1
server 3.7

setsockopt 5.9 5.
shutdown 5.9.1
SNA LU6.2 1.2.3 9.1 10.1
sniffer 11.3

SNMP/DPI 2.6
SO_LINGER 5.9.
SO_REUSEADDR 5.9

Socket 3.3 5.4 11.1

socket address 3.3 3.6
socket address structure
socket API trace 11.4
socket descriptor 3.3 3.6.
socket descriptor number 5.4
socket library 3.6 3.6.1

socket number 3.3

socket programming interface 2.2
socket type 5.4

socket types 3.4

socket, trace 11.4

Sockets Extended 2.2 4.3 4.4

Sockets Extended assembler macro interface 4.4
Sockets Extended call interface 4.3

Sockets Extended functions 4.3

somaxconn 5.6

split 1.2.1

[~

Nej
N

N

(O
s

o
IS
(o
@]
o
~J
oo
N

—
(o
[~
o
~J

A Beginner's Guide to MVS TCP/IP Socket Programming 342

A Beginner's Guide to MVS TCP/IP Socket Programming

stack 3.1
starting server subtasks 6.4

stream boundaries 5.8

stream chopping techniques 5.8.1

stream concept 5.8

stream socket 2.2 3.4 5.8

subtask 5.3 1.2

subtask parameter in CICS 5.3
subtasking 6.1

SYN segment 11.3

SYN+ACK segments 11.3

SYNC 6.5

synchronize after asynchronous call 6.5
synchronizing updates (IMS) 9.5
SYSDEBUG 11.4

T

takesocket 6.6.2 11.

takesocket (CICS) 10.3
takesocket (IMS) 9.3.3

task management 6.2.3

task number in CICS 5.3
task related user exit (CICS) 10.2
task storage area 4.4
task-level security 6£.2.4
TCBSENV 5.11.2

TCP 3.1 3.4

TCP buffer flushing 5.8.1
TCP connection sequence 11.3
TCP header 3.5

TCP segment 3.5

TCP window 11.3

TCP/IP protocol stack 3.1
TCPCICSERR error message 10.3
tcperrno header file 4.2
tcperror 4.2 11.1

tcpname 5.3

termapi 7.5

test for pending activity 5.10
three-way TCP handshake 11.3
TIM (CICS) 10.3

TIM (IMS) 9.3.2 9.3.3
time-out logic 8.1

TIMEWAIT state 5.9

tn3270 9.1 10.1

TRACE PACKET command 11.
TRACE SOCKET command 11.
trace, application 11.2

tracing, API 11.4

transaction initiation message (CICS) 10.3
transaction initiation message (IMS) 9.3.2 9.3.3
transaction request message (CICS) 10.3
transaction request message (IMS) 9.3.2 9.3.3
transaction routing (CICS) 10.1

transient data (CICS) 10.3

TRCEFMT 11.3

trgcls 11.4

TRM (CICS) 10.3

TRM (IMS) 9.3.
TRNREQ 9.3.2 9.3.3
TRUE (CICS) 10.2

U

U4093 4.3.2

—

IS (OV]

N
Ne)
(o8]
o8]

A Beginner's Guide to MVS TCP/IP Socket Programming 343

A Beginner's Guide to MVS TCP/IP Socket Programming

UDP 3.1 3.4

UDP header 3.5

UDP receive queue 8.2
UNIX domain socket 3.6
unnamed socket 5.4
unreliable 8.1

user abend 4093 4.3.2
user ID 5.11.1

v

variable length messages 5.8.1

VMCF 4.1

w

wait-for—-input transactions (IMS) 9.3.4

well-known port 3.2.2
well-known service 3.2.2
WFI 9.3.4

window, TCP 11.3

workload management 6.2.3
write 5.8.2

writing data 5.8.2

X

x client 2.4

x server 2.4

X-Windows 1.2.1 2.4

X-Windows intrinsic functions 2.4
X-Windows toolkits 2.4

X-Windows widget set 2.4

X/Open Transport Interface 2.5

X11.4 2.4
XTI 2.5

xxxXADLI 9.2 9.3.4

COMMENTS ITSO Technical Bulletin Evaluation RED000

A Beginner's Guide to MVS TCP/IP Socket Programming

Publication No. GG24-2561-00

Your feedback is very important to help us maintain the quality of ITSO
Bulletins. Please print out this questionnaire, fill it out, and then
return it using one of the following methods:

Mail it to the address on the back (postage paid in U.S. only)

Give 1t to an IBM marketing representative for mailing

Fax it to: Your International Access Code + 1 914 432 8246

Send a note to REDBOOKW@VNET.IBM.COM

Copy this section to file and send it via VNET to: QUALITY @ WTSCPOK

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Grammar/punctuation/spelling
Ease of reading and understanding

Organization of the book
Accuracy of the information

Relevance of the information Ease of finding information
Completeness of the information Level of technical detail
Value of illustrations Print quality

A Beginner's Guide to MVS TCP/IP Socket Programming 344

A Beginner's Guide to MVS TCP/IP Socket Programming

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:
Do you provide billable services for 20% or more of your time? Yes_ ~~ No__
Are you in a Services Organization? Yes_ __ No
b) Are you working in the USA? Yes_ ~~ No_
c) Was the Bulletin published in time for your needs? Yes_ ~~ No__
d) Did this Bulletin meet your needs? Yes_ ~ No__

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Address your comments to:

IBM International Technical Support Organization
Department 545, Building 657

P.O. BOX 12195

RESEARCH TRIANGLE PARK NC

USA 27709-2195

Name e e e e
Company or Organization
Address

Phone No.

A Beginner's Guide to MVS TCP/IP Socket Programming 345

A Beginner's Guide to MVS TCP/IP Socket Programming

Processed by boo2pdf (http://www.kev009.com/wp/boo2pdf)

A Beginner's Guide to MVS TCP/IP Socket Programming 346

http://www.kev009.com/wp/boo2pdf

	A Beginner's Guide to MVS TCP/IP Socket Programming

